Online Location Planning for AI-Defined Vehicles: Optimizing Joint Tasks of Order Serving and Spatio-Temporal Heterogeneous Model Fine-Tuning
- URL: http://arxiv.org/abs/2502.04399v1
- Date: Thu, 06 Feb 2025 07:23:40 GMT
- Title: Online Location Planning for AI-Defined Vehicles: Optimizing Joint Tasks of Order Serving and Spatio-Temporal Heterogeneous Model Fine-Tuning
- Authors: Bokeng Zheng, Bo Rao, Tianxiang Zhu, Chee Wei Tan, Jingpu Duan, Zhi Zhou, Xu Chen, Xiaoxi Zhang,
- Abstract summary: Vehicle crowdsensing (VCS) has emerged as a key enabler, leveraging vehicles' mobility and sensor-equipped capabilities.
This work explores a promising scenario, where edge-assisted vehicles perform joint tasks of order serving and foundation model finetuning.
- Score: 12.784479119173223
- License:
- Abstract: Advances in artificial intelligence (AI) including foundation models (FMs), are increasingly transforming human society, with smart city driving the evolution of urban living.Meanwhile, vehicle crowdsensing (VCS) has emerged as a key enabler, leveraging vehicles' mobility and sensor-equipped capabilities. In particular, ride-hailing vehicles can effectively facilitate flexible data collection and contribute towards urban intelligence, despite resource limitations. Therefore, this work explores a promising scenario, where edge-assisted vehicles perform joint tasks of order serving and the emerging foundation model fine-tuning using various urban data. However, integrating the VCS AI task with the conventional order serving task is challenging, due to their inconsistent spatio-temporal characteristics: (i) The distributions of ride orders and data point-of-interests (PoIs) may not coincide in geography, both following a priori unknown patterns; (ii) they have distinct forms of temporal effects, i.e., prolonged waiting makes orders become instantly invalid while data with increased staleness gradually reduces its utility for model fine-tuning.To overcome these obstacles, we propose an online framework based on multi-agent reinforcement learning (MARL) with careful augmentation. A new quality-of-service (QoS) metric is designed to characterize and balance the utility of the two joint tasks, under the effects of varying data volumes and staleness. We also integrate graph neural networks (GNNs) with MARL to enhance state representations, capturing graph-structured, time-varying dependencies among vehicles and across locations. Extensive experiments on our testbed simulator, utilizing various real-world foundation model fine-tuning tasks and the New York City Taxi ride order dataset, demonstrate the advantage of our proposed method.
Related papers
- Collaborative Imputation of Urban Time Series through Cross-city Meta-learning [54.438991949772145]
We propose a novel collaborative imputation paradigm leveraging meta-learned implicit neural representations (INRs)
We then introduce a cross-city collaborative learning scheme through model-agnostic meta learning.
Experiments on a diverse urban dataset from 20 global cities demonstrate our model's superior imputation performance and generalizability.
arXiv Detail & Related papers (2025-01-20T07:12:40Z) - Self-Supervised State Space Model for Real-Time Traffic Accident Prediction Using eKAN Networks [18.385759762991896]
SSL-eKamba is an efficient self-supervised framework for traffic accident prediction.
To enhance generalization, we design two self-supervised auxiliary tasks that adaptively improve traffic pattern representation.
Experiments on two real-world datasets demonstrate that SSL-eKamba consistently outperforms state-of-the-art baselines.
arXiv Detail & Related papers (2024-09-09T14:25:51Z) - Siamese Multiple Attention Temporal Convolution Networks for Human Mobility Signature Identification [9.25278235266564]
We propose a Siamese Multiple Attention Temporal Convolutional Network (Siamese MA-TCN) to capitalize on the strengths of both TCN architecture and multi-head self-attention.
Experimental evaluations conducted on two real-world taxi trajectory datasets reveal that our proposed model effectively extracts both local key information and long-term dependencies.
arXiv Detail & Related papers (2024-08-17T15:27:38Z) - SMA-Hyper: Spatiotemporal Multi-View Fusion Hypergraph Learning for Traffic Accident Prediction [2.807532512532818]
Current data-driven models often struggle with data sparsity and the integration of diverse urban data sources.
We introduce a deep dynamic learning framework designed for traffic accident prediction.
It incorporates dual adaptive graph learning mechanisms that enable high-order cross-regional learning.
It also employs an advance attention mechanism to fuse multiple views of accident data and urban functional features.
arXiv Detail & Related papers (2024-07-24T21:10:34Z) - Digital Twin Mobility Profiling: A Spatio-Temporal Graph Learning
Approach [9.56255685195115]
Mobility profiling can extract potential patterns in urban traffic from mobility data.
Digital twin (DT) technology paves the way for cost-effective and performance-optimised management.
We propose a digital twin mobility profiling framework to learn node profiles on a mobilitytemporal network DT model.
arXiv Detail & Related papers (2024-02-06T06:37:43Z) - Forging Vision Foundation Models for Autonomous Driving: Challenges,
Methodologies, and Opportunities [59.02391344178202]
Vision foundation models (VFMs) serve as potent building blocks for a wide range of AI applications.
The scarcity of comprehensive training data, the need for multi-sensor integration, and the diverse task-specific architectures pose significant obstacles to the development of VFMs.
This paper delves into the critical challenge of forging VFMs tailored specifically for autonomous driving, while also outlining future directions.
arXiv Detail & Related papers (2024-01-16T01:57:24Z) - Rethinking Urban Mobility Prediction: A Super-Multivariate Time Series
Forecasting Approach [71.67506068703314]
Long-term urban mobility predictions play a crucial role in the effective management of urban facilities and services.
Traditionally, urban mobility data has been structured as videos, treating longitude and latitude as fundamental pixels.
In our research, we introduce a fresh perspective on urban mobility prediction.
Instead of oversimplifying urban mobility data as traditional video data, we regard it as a complex time series.
arXiv Detail & Related papers (2023-12-04T07:39:05Z) - Multi-Agent Deep Reinforcement Learning for Dynamic Avatar Migration in
AIoT-enabled Vehicular Metaverses with Trajectory Prediction [70.9337170201739]
We propose a model to predict the future trajectories of intelligent vehicles based on their historical data.
We show that our proposed algorithm can effectively reduce the latency of executing avatar tasks by around 25% without prediction.
arXiv Detail & Related papers (2023-06-26T13:27:11Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Value Function is All You Need: A Unified Learning Framework for Ride
Hailing Platforms [57.21078336887961]
Large ride-hailing platforms, such as DiDi, Uber and Lyft, connect tens of thousands of vehicles in a city to millions of ride demands throughout the day.
We propose a unified value-based dynamic learning framework (V1D3) for tackling both tasks.
arXiv Detail & Related papers (2021-05-18T19:22:24Z) - AttnMove: History Enhanced Trajectory Recovery via Attentional Network [15.685998183691655]
We propose a novel attentional neural network-based model, named AttnMove, to densify individual trajectories by recovering unobserved locations.
We evaluate our model on two real-world datasets, and extensive results demonstrate the performance gain compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-01-03T15:45:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.