論文の概要: Training Language Models to Reason Efficiently
- arxiv url: http://arxiv.org/abs/2502.04463v2
- Date: Tue, 11 Feb 2025 18:06:02 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-12 14:10:01.437665
- Title: Training Language Models to Reason Efficiently
- Title(参考訳): 言語モデルの推論を効果的に行うための訓練
- Authors: Daman Arora, Andrea Zanette,
- Abstract要約: 我々は、強化学習を用いて、大きな推論モデルを訓練し、効率的に推論する。
精度を維持しながら不要な計算オーバーヘッドを最小限に抑えるため,本手法はモデルにインセンティブを与える。
2つのオープンウェイトな大推論モデルに対する実験は、ほとんどの精度を保ちながら、推論コストを著しく削減することを示した。
- 参考スコア(独自算出の注目度): 14.390800014819439
- License:
- Abstract: Scaling model size and training data has led to great advances in the performance of Large Language Models (LLMs). However, the diminishing returns of this approach necessitate alternative methods to improve model capabilities, particularly in tasks requiring advanced reasoning. Large reasoning models, which leverage long chain-of-thoughts, bring unprecedented breakthroughs in problem-solving capabilities but at a substantial deployment cost associated to longer generations. Reducing inference costs is crucial for the economic feasibility, user experience, and environmental sustainability of these models. In this work, we propose to train large reasoning models to reason efficiently. More precisely, we use reinforcement learning (RL) to train reasoning models to dynamically allocate inference-time compute based on task complexity. Our method incentivizes models to minimize unnecessary computational overhead while maintaining accuracy, thereby achieving substantial efficiency gains. It enables the derivation of a family of reasoning models with varying efficiency levels, controlled via a single hyperparameter. Experiments on two open-weight large reasoning models demonstrate significant reductions in inference cost while preserving most of the accuracy.
- Abstract(参考訳): モデルサイズとトレーニングデータのスケーリングは、LLM(Large Language Models)のパフォーマンスに大きな進歩をもたらした。
しかし、このアプローチのリターンの低下は、特に高度な推論を必要とするタスクにおいて、モデル機能を改善するための代替手法を必要とします。
長いチェーン・オブ・思想を利用する大規模な推論モデルは、問題解決能力において前例のないブレークスルーをもたらすが、より長い世代にまつわる相当なデプロイメントコストが伴う。
推論コストの削減は、これらのモデルの経済的実現可能性、ユーザエクスペリエンス、環境持続可能性に不可欠である。
そこで本研究では,大規模推論モデルの学習を効率的に行うことを提案する。
より正確には、強化学習(RL)を用いて推論モデルを訓練し、タスク複雑性に基づいて推論時間計算を動的に割り当てる。
本手法は,精度を保ちながら不要な計算オーバーヘッドを最小限に抑えるため,モデルにインセンティブを与える。
これは、単一のハイパーパラメータを介して制御される、様々な効率レベルを持つ推論モデルのファミリーの導出を可能にする。
2つのオープンウェイトな大推論モデルに対する実験は、ほとんどの精度を保ちながら、推論コストを著しく削減することを示した。
関連論文リスト
- Reusing Embeddings: Reproducible Reward Model Research in Large Language Model Alignment without GPUs [58.18140409409302]
大規模言語モデル (LLM) は強化学習 (RL) を通じて構造化タスクに大きく進歩した。
チャットボットやコンテンツ生成といった幅広い分野にRLを適用することは、ユニークな課題だ。
埋め込み型報酬モデルを用いた既存の報酬モデルアンサンブル研究の再現事例について述べる。
論文 参考訳(メタデータ) (2025-02-04T19:37:35Z) - Patience Is The Key to Large Language Model Reasoning [0.0]
そこで我々は,モデルに患者推論スタイルを採用することを奨励する簡単な方法を提案する。
我々は、肯定的な例として詳細な推論プロセス、否定的な例として単純な回答を生成し、その結果、その反応の完全性を支持するようにモデルを訓練する。
この結果から,軽量データセット上でのトレーニングにより,GSM8kのパフォーマンスは最大2.1%向上した。
論文 参考訳(メタデータ) (2024-11-20T07:20:48Z) - DistiLLM: Towards Streamlined Distillation for Large Language Models [53.46759297929675]
DistiLLMは自動回帰言語モデルのためのより効率的で効率的なKDフレームワークである。
DisiLLMは,(1)新しいスキューKulback-Leibler分散損失,(2)学生生成出力の効率向上を目的とした適応型オフ政治アプローチの2つのコンポーネントから構成される。
論文 参考訳(メタデータ) (2024-02-06T11:10:35Z) - EsaCL: Efficient Continual Learning of Sparse Models [10.227171407348326]
連続的な学習設定の主な課題は、以前に学習したタスクを実行する方法を忘れずに、タスクのシーケンスを効率的に学習することである。
本研究では,モデルの予測力に悪影響を及ぼすことなく,冗長なパラメータを自動生成する,スパースモデル(EsaCL)の効率的な連続学習法を提案する。
論文 参考訳(メタデータ) (2024-01-11T04:59:44Z) - Fast-ELECTRA for Efficient Pre-training [83.29484808667532]
ELECTRAは補助モデルに置き換えられたシーケンス内のトークンを検出して、言語モデルを事前訓練する。
本稿では,既存の言語モデルを補助モデルとして活用したFast-ELECTRAを提案する。
提案手法は,最先端のELECTRA型事前学習手法の性能に匹敵するが,補助モデルの連成学習による計算とメモリコストは著しく削減される。
論文 参考訳(メタデータ) (2023-10-11T09:55:46Z) - Learning a model is paramount for sample efficiency in reinforcement
learning control of PDEs [5.488334211013093]
RLエージェントの訓練と並行して動作モデルを学ぶことで,実システムからサンプリングしたデータ量を大幅に削減できることを示す。
また、RLトレーニングのバイアスを避けるために、モデルを反復的に更新することが重要であることも示している。
論文 参考訳(メタデータ) (2023-02-14T16:14:39Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Alternate Model Growth and Pruning for Efficient Training of
Recommendation Systems [7.415129876303651]
モデルプルーニングは、冗長なパラメータを取り除いてディープニューラルネットワークの計算オーバーヘッドを削減する効果的な手法である。
ビッグデータ処理の需要のため、現代のレコメンデーションシステムはモデルキャパシティにとってまだ渇望的です。
トレーニング中の重量を代替して構築し、調整するためのダイナミックなトレーニングスキーム、すなわち、モデルの成長と刈り取りを提案します。
論文 参考訳(メタデータ) (2021-05-04T03:14:30Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Train Large, Then Compress: Rethinking Model Size for Efficient Training
and Inference of Transformers [94.43313684188819]
本研究では,計算によって制限されたNLPタスクのトランスフォーマーモデルに着目し,モデルサイズの影響について検討する。
まず最初に、より小さなTransformerモデルがイテレーション毎に高速に実行されているにもかかわらず、より広いモデルとより深いモデルがはるかに少ないステップで収束していることを示します。
これは、大きなTransformerモデルのトレーニング効率と小さなTransformerモデルの推論効率との間に明らかなトレードオフをもたらす。
論文 参考訳(メタデータ) (2020-02-26T21:17:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。