論文の概要: Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models
- arxiv url: http://arxiv.org/abs/2508.02120v1
- Date: Mon, 04 Aug 2025 06:54:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-05 18:25:22.212187
- Title: Don't Overthink It: A Survey of Efficient R1-style Large Reasoning Models
- Title(参考訳): 考え過ぎない:R1スタイルの大規模推論モデルの効率化に関する調査
- Authors: Linan Yue, Yichao Du, Yizhi Wang, Weibo Gao, Fangzhou Yao, Li Wang, Ye Liu, Ziyu Xu, Qi Liu, Shimin Di, Min-Ling Zhang,
- Abstract要約: 大規模共振モデル (LRM) は, 複雑なタスクの処理性能に優れていたため, 徐々に研究ホットスポットになりつつある。
しかし、これらのモデルが広く適用されたことにより、過度に考え直すという問題が徐々に顕在化していった。
モデル性能と推論能力を損なうことなく、推論経路の長さを短縮することを目的とした、様々な効率的な推論手法が提案されている。
- 参考スコア(独自算出の注目度): 49.598776427454176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recently, Large Reasoning Models (LRMs) have gradually become a research hotspot due to their outstanding performance in handling complex tasks. Among them, DeepSeek R1 has garnered significant attention for its exceptional performance and open-source nature, driving advancements in the research of R1-style LRMs. Unlike traditional Large Language Models (LLMs), these models enhance logical deduction and decision-making capabilities during reasoning by incorporating mechanisms such as long chain-of-thought and self-reflection through reinforcement learning. However, with the widespread application of these models, the problem of overthinking has gradually emerged. Specifically, when generating answers, these models often construct excessively long reasoning chains with redundant or repetitive steps, which leads to reduced reasoning efficiency and may affect the accuracy of the final answer. To this end, various efficient reasoning methods have been proposed, aiming to reduce the length of reasoning paths without compromising model performance and reasoning capability. By reviewing the current research advancements in the field of efficient reasoning methods systematically, we categorize existing works into two main directions based on the lens of single-model optimization versus model collaboration: (1) Efficient Reasoning with Single Model, which focuses on improving the reasoning efficiency of individual models; and (2) Efficient Reasoning with Model Collaboration, which explores optimizing reasoning paths through collaboration among multiple models. Besides, we maintain a public GitHub repository that tracks the latest progress in efficient reasoning methods.
- Abstract(参考訳): 近年,Large Reasoning Models (LRM) は,複雑なタスクの処理能力に優れていたため,徐々に研究ホットスポットになりつつある。
その中でもDeepSeek R1は、その例外的な性能とオープンソース性において大きな注目を集め、R1スタイルのLEMの研究を推進している。
従来のLarge Language Models(LLM)とは異なり、これらのモデルは、強化学習による長い連鎖や自己回帰といったメカニズムを取り入れることで、推論中の論理的推論と意思決定能力を向上させる。
しかし、これらのモデルが広く適用されたことにより、過度に考え直すという問題が徐々に浮かび上がってきている。
具体的には、答えを生成するとき、これらのモデルは冗長または反復的なステップで過度に長い推論連鎖を構築し、推論効率を低下させ、最終的な答えの正確性に影響を与える可能性がある。
この目的のために, モデル性能と推論能力を損なうことなく, 推論経路の長さを短縮することを目的とした, 様々な効率的な推論手法が提案されている。
効率的な推論手法の分野における現在の研究の進歩を体系的にレビューすることにより、既存の研究を、単モデル最適化とモデル協調のレンズに基づく2つの主な方向に分類する:(1)個々のモデルの推論効率の改善に焦点を当てた単モデルによる効率的な推論、(2)複数のモデル間の協調による推論経路の最適化を探求するモデル協調による効率的な推論
さらに、効率的な推論方法の最新の進捗を追跡する、パブリックなGitHubリポジトリも維持しています。
関連論文リスト
- Lost at the Beginning of Reasoning [82.18834329384514]
第1の推論ステップが最終予測に不当に大きな影響を与えることを示す。
本稿では、報酬モデルを利用して高品質な第1推論ステップを特定し、維持する効率的なサンプリング戦略を提案する。
モデル自己補正能力を体系的に評価するために、意図的に欠陥のある第1の推論ステップで構築された新しいベンチマークを導入する。
論文 参考訳(メタデータ) (2025-06-27T09:53:57Z) - Exploring and Exploiting the Inherent Efficiency within Large Reasoning Models for Self-Guided Efficiency Enhancement [101.77467538102924]
大きな推論モデル(LRM)は、効率を阻害し、推論コストを膨らませる過剰な考えを示す。
LRM効率を向上させるための2つの軽量手法を提案する。
まず,学習不要なアクティベーションステアリング技術であるEfficic Steeringを導入する。
第2に,タスクの正確さと簡潔さを動的にバランスする強化学習フレームワークである自己回帰効率RLを開発する。
論文 参考訳(メタデータ) (2025-06-18T17:18:12Z) - Accelerating Large Language Model Reasoning via Speculative Search [59.48276891032373]
本稿では,大規模言語モデル(LLM)推論を著しく高速化する新しいSpec Searchフレームワークを提案する。
具体的には、SpecSearchは小さなモデルを使用して、思考とトークンのレベルで大きなモデルと戦略的に協力する。
SpecSearchの主要な柱は、大きなモデルの出力よりも品質が低い考えを効果的にフィルタリングする、新しい品質保存の拒絶メカニズムである。
論文 参考訳(メタデータ) (2025-05-03T12:14:08Z) - Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
本研究は推論モデルと非推論モデルの両方に対する推論時間スケーリング手法を包括的に解析する。
非推論モデルは、非常に高い推論予算にもかかわらず、推論モデルに大きく遅れていることが分かっています。
推論モデルでは、多数決は堅牢な推論戦略であり、一般的に競争力があるか、あるいは他のより洗練されたITC手法よりも優れていることが証明されている。
論文 参考訳(メタデータ) (2025-04-18T19:32:55Z) - Unlocking Efficient Long-to-Short LLM Reasoning with Model Merging [17.038807261969033]
Long-to-Short (L2S) 推論は推論深度と実用効率のバランスをとることを目的としている。
モデルマージは、System 1モデルの迅速な思考能力とSystem 2モデルの方法論的推論を統合することで、コスト効率が高く堅牢な代替手段を提供する。
実験の結果,モデルマージにより平均応答長を最大55%削減できることがわかった。
論文 参考訳(メタデータ) (2025-03-26T15:34:37Z) - Stop Overthinking: A Survey on Efficient Reasoning for Large Language Models [54.04678363287392]
大規模言語モデル(LLM)は複雑なタスクにおいて顕著な機能を示した。
OpenAI o1とDeepSeek-R1の最近の進歩は、System-2推論ドメインのパフォーマンスをさらに改善した。
論文 参考訳(メタデータ) (2025-03-20T17:59:38Z) - Training Language Models to Reason Efficiently [14.390800014819439]
我々は、強化学習を用いて、大きな推論モデルを訓練し、効率的に推論する。
精度を維持しながら不要な計算オーバーヘッドを最小限に抑えるため,本手法はモデルにインセンティブを与える。
2つのオープンウェイトな大推論モデルに対する実験は、ほとんどの精度を保ちながら、推論コストを著しく削減することを示した。
論文 参考訳(メタデータ) (2025-02-06T19:18:16Z) - Boosting the Power of Small Multimodal Reasoning Models to Match Larger Models with Self-Consistency Training [49.3242278912771]
マルチモーダル推論(multimodal reasoning)は、複数のモーダルをまたいだモデルによる質問に答える難しいタスクである。
既存のアプローチでは、言語と視覚のモダリティを2段階の推論フレームワークに組み込むことで進歩している。
MC-CoTは,複数の合理性と回答を生成し,投票プロセスを通じて最も正確な選択を行う自己整合性学習戦略である。
論文 参考訳(メタデータ) (2023-11-23T17:09:48Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。