Measuring Physical Plausibility of 3D Human Poses Using Physics Simulation
- URL: http://arxiv.org/abs/2502.04483v1
- Date: Thu, 06 Feb 2025 20:15:49 GMT
- Title: Measuring Physical Plausibility of 3D Human Poses Using Physics Simulation
- Authors: Nathan Louis, Mahzad Khoshlessan, Jason J. Corso,
- Abstract summary: We introduce two metrics to capture the physical plausibility and stability of predicted 3D poses from any 3D Human Pose Estimation model.
Using physics simulation, we discover correlations with existing plausibility metrics and measuring stability during motion.
- Score: 19.26289173517333
- License:
- Abstract: Modeling humans in physical scenes is vital for understanding human-environment interactions for applications involving augmented reality or assessment of human actions from video (e.g. sports or physical rehabilitation). State-of-the-art literature begins with a 3D human pose, from monocular or multiple views, and uses this representation to ground the person within a 3D world space. While standard metrics for accuracy capture joint position errors, they do not consider physical plausibility of the 3D pose. This limitation has motivated researchers to propose other metrics evaluating jitter, floor penetration, and unbalanced postures. Yet, these approaches measure independent instances of errors and are not representative of balance or stability during motion. In this work, we propose measuring physical plausibility from within physics simulation. We introduce two metrics to capture the physical plausibility and stability of predicted 3D poses from any 3D Human Pose Estimation model. Using physics simulation, we discover correlations with existing plausibility metrics and measuring stability during motion. We evaluate and compare the performances of two state-of-the-art methods, a multi-view triangulated baseline, and ground truth 3D markers from the Human3.6m dataset.
Related papers
- Hybrid 3D Human Pose Estimation with Monocular Video and Sparse IMUs [15.017274891943162]
Temporal 3D human pose estimation from monocular videos is a challenging task in human-centered computer vision.
Inertial sensor has been introduced to provide complementary source of information.
It remains challenging to integrate heterogeneous sensor data for producing physically rational 3D human poses.
arXiv Detail & Related papers (2024-04-27T09:02:42Z) - MultiPhys: Multi-Person Physics-aware 3D Motion Estimation [28.91813849219037]
We introduce MultiPhys, a method designed for recovering multi-person motion from monocular videos.
Our focus lies in capturing coherent spatial placement between pairs of individuals across varying degrees of engagement.
We devise a pipeline in which the motion estimated by a kinematic-based method is fed into a physics simulator in an autoregressive manner.
arXiv Detail & Related papers (2024-04-18T08:29:29Z) - Decaf: Monocular Deformation Capture for Face and Hand Interactions [77.75726740605748]
This paper introduces the first method that allows tracking human hands interacting with human faces in 3D from single monocular RGB videos.
We model hands as articulated objects inducing non-rigid face deformations during an active interaction.
Our method relies on a new hand-face motion and interaction capture dataset with realistic face deformations acquired with a markerless multi-view camera system.
arXiv Detail & Related papers (2023-09-28T17:59:51Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
We focus on the task of estimating a physically plausible articulated human motion from monocular video.
Existing approaches that do not consider physics often produce temporally inconsistent output with motion artifacts.
We show that our approach achieves competitive results with respect to existing physics-based methods on the Human3.6M benchmark.
arXiv Detail & Related papers (2022-05-24T18:02:49Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
We introduce DiffPhy, a differentiable physics-based model for articulated 3d human motion reconstruction from video.
We validate the model by demonstrating that it can accurately reconstruct physically plausible 3d human motion from monocular video.
arXiv Detail & Related papers (2022-05-24T17:58:37Z) - LatentHuman: Shape-and-Pose Disentangled Latent Representation for Human
Bodies [78.17425779503047]
We propose a novel neural implicit representation for the human body.
It is fully differentiable and optimizable with disentangled shape and pose latent spaces.
Our model can be trained and fine-tuned directly on non-watertight raw data with well-designed losses.
arXiv Detail & Related papers (2021-11-30T04:10:57Z) - Adapted Human Pose: Monocular 3D Human Pose Estimation with Zero Real 3D
Pose Data [14.719976311208502]
Training vs. test data domain gaps often negatively affect model performance.
We present our adapted human pose (AHuP) approach that addresses adaptation problems in both appearance and pose spaces.
AHuP is built around a practical assumption that in real applications, data from target domain could be inaccessible or only limited information can be acquired.
arXiv Detail & Related papers (2021-05-23T01:20:40Z) - PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time [89.68248627276955]
Marker-less 3D motion capture from a single colour camera has seen significant progress.
However, it is a very challenging and severely ill-posed problem.
We present PhysCap, the first algorithm for physically plausible, real-time and marker-less human 3D motion capture.
arXiv Detail & Related papers (2020-08-20T10:46:32Z) - Contact and Human Dynamics from Monocular Video [73.47466545178396]
Existing deep models predict 2D and 3D kinematic poses from video that are approximately accurate, but contain visible errors.
We present a physics-based method for inferring 3D human motion from video sequences that takes initial 2D and 3D pose estimates as input.
arXiv Detail & Related papers (2020-07-22T21:09:11Z) - Kinematic-Structure-Preserved Representation for Unsupervised 3D Human
Pose Estimation [58.72192168935338]
Generalizability of human pose estimation models developed using supervision on large-scale in-studio datasets remains questionable.
We propose a novel kinematic-structure-preserved unsupervised 3D pose estimation framework, which is not restrained by any paired or unpaired weak supervisions.
Our proposed model employs three consecutive differentiable transformations named as forward-kinematics, camera-projection and spatial-map transformation.
arXiv Detail & Related papers (2020-06-24T23:56:33Z) - Self-Supervised 3D Human Pose Estimation via Part Guided Novel Image
Synthesis [72.34794624243281]
We propose a self-supervised learning framework to disentangle variations from unlabeled video frames.
Our differentiable formalization, bridging the representation gap between the 3D pose and spatial part maps, allows us to operate on videos with diverse camera movements.
arXiv Detail & Related papers (2020-04-09T07:55:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.