LUND-PROBE -- LUND Prostate Radiotherapy Open Benchmarking and Evaluation dataset
- URL: http://arxiv.org/abs/2502.04493v1
- Date: Thu, 06 Feb 2025 20:44:42 GMT
- Title: LUND-PROBE -- LUND Prostate Radiotherapy Open Benchmarking and Evaluation dataset
- Authors: Viktor Rogowski, Lars E Olsson, Jonas Scherman, Emilia Persson, Mustafa Kadhim, Sacha af Wetterstedt, Adalsteinn Gunnlaugsson, Martin P. Nilsson, Nandor Vass, Mathieu Moreau, Maria Gebre Medhin, Sven Bäck, Per Munck af Rosenschöld, Silke Engelholm, Christian Jamtheim Gustafsson,
- Abstract summary: A publicly available clinical dataset is presented, comprising MRI- and synthetic CT (sCT) images, target and OARs segmentations, and dose radiotherapy for 432 prostate cancer patients treated with MRI-guided radiotherapy.
An extended dataset with 35 patients is also included, with the addition of deep learning (DL)-generated segmentations, DL segmentation uncertainty maps, and DL segmentations manually adjusted by four radiation oncologists.
The publication aims to aid research within the fields of automated radiotherapy treatment planning, segmentation, inter-observer analyses, and DL model uncertainty investigation.
- Score: 0.0
- License:
- Abstract: Radiotherapy treatment for prostate cancer relies on computed tomography (CT) and/or magnetic resonance imaging (MRI) for segmentation of target volumes and organs at risk (OARs). Manual segmentation of these volumes is regarded as the gold standard for ground truth in machine learning applications but to acquire such data is tedious and time-consuming. A publicly available clinical dataset is presented, comprising MRI- and synthetic CT (sCT) images, target and OARs segmentations, and radiotherapy dose distributions for 432 prostate cancer patients treated with MRI-guided radiotherapy. An extended dataset with 35 patients is also included, with the addition of deep learning (DL)-generated segmentations, DL segmentation uncertainty maps, and DL segmentations manually adjusted by four radiation oncologists. The publication of these resources aims to aid research within the fields of automated radiotherapy treatment planning, segmentation, inter-observer analyses, and DL model uncertainty investigation. The dataset is hosted on the AIDA Data Hub and offers a free-to-use resource for the scientific community, valuable for the advancement of medical imaging and prostate cancer radiotherapy research.
Related papers
- MGH Radiology Llama: A Llama 3 70B Model for Radiology [50.42811030970618]
This paper presents an advanced radiology-focused large language model: MGH Radiology Llama.
It is developed using the Llama 3 70B model, building upon previous domain-specific models like Radiology-GPT and Radiology-Llama2.
Our evaluation, incorporating both traditional metrics and a GPT-4-based assessment, highlights the enhanced performance of this work over general-purpose LLMs.
arXiv Detail & Related papers (2024-08-13T01:30:03Z) - Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation [47.119513326344126]
The BraTS-MEN-RT challenge aims to advance automated segmentation algorithms using the largest known multi-institutional dataset of radiotherapy planning brain MRIs.
Each case includes a defaced 3D post-contrast T1-weighted radiotherapy planning MRI in its native acquisition space.
Target volume annotations adhere to established radiotherapy planning protocols.
arXiv Detail & Related papers (2024-05-28T17:25:43Z) - Radiology Report Generation Using Transformers Conditioned with
Non-imaging Data [55.17268696112258]
This paper proposes a novel multi-modal transformer network that integrates chest x-ray (CXR) images and associated patient demographic information.
The proposed network uses a convolutional neural network to extract visual features from CXRs and a transformer-based encoder-decoder network that combines the visual features with semantic text embeddings of patient demographic information.
arXiv Detail & Related papers (2023-11-18T14:52:26Z) - ChatRadio-Valuer: A Chat Large Language Model for Generalizable
Radiology Report Generation Based on Multi-institution and Multi-system Data [115.0747462486285]
ChatRadio-Valuer is a tailored model for automatic radiology report generation that learns generalizable representations.
The clinical dataset utilized in this study encompasses a remarkable total of textbf332,673 observations.
ChatRadio-Valuer consistently outperforms state-of-the-art models, especially ChatGPT (GPT-3.5-Turbo) and GPT-4 et al.
arXiv Detail & Related papers (2023-10-08T17:23:17Z) - Radiology-Llama2: Best-in-Class Large Language Model for Radiology [71.27700230067168]
This paper introduces Radiology-Llama2, a large language model specialized for radiology through a process known as instruction tuning.
Quantitative evaluations using ROUGE metrics on the MIMIC-CXR and OpenI datasets demonstrate that Radiology-Llama2 achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-08-29T17:44:28Z) - Segmentation of Planning Target Volume in CT Series for Total Marrow
Irradiation Using U-Net [0.0]
We present a deep learning-based auto-contouring method for segmenting Planning Target Volume (PTV) for TMLI treatment using the U-Net architecture.
Our findings are a preliminary but significant step towards developing a segmentation model that has the potential to save radiation oncologists a considerable amount of time.
arXiv Detail & Related papers (2023-04-05T10:40:37Z) - SynthRAD2023 Grand Challenge dataset: generating synthetic CT for
radiotherapy [0.0]
This paper describes a dataset of brain and pelvis computed tomography (CT) images with rigidly registered CBCT and MRI images.
The dataset consists of CT, CBCT, and MRI of 540 brains and 540 pelvic radiotherapy patients from three Dutch university medical centers.
arXiv Detail & Related papers (2023-03-28T21:38:25Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
We propose a hybrid deep neural network pipeline to predict tumour response to initial chemotherapy.
We leverage a combination of representation transfer from segmentation to classification, as well as localisation and representation learning.
Our approach yields a remarkably data-efficient method able to predict treatment response with a ROC-AUC of 63.7% using only 477 datasets in total.
arXiv Detail & Related papers (2022-11-08T11:50:31Z) - Integrative Imaging Informatics for Cancer Research: Workflow Automation
for Neuro-oncology (I3CR-WANO) [0.12175619840081271]
We propose an artificial intelligence-based solution for the aggregation and processing of multisequence neuro-Oncology MRI data.
Our end-to-end framework i) classifies MRI sequences using an ensemble classifier, ii) preprocesses the data in a reproducible manner, and iv) delineates tumor tissue subtypes.
It is robust to missing sequences and adopts an expert-in-the-loop approach, where the segmentation results may be manually refined by radiologists.
arXiv Detail & Related papers (2022-10-06T18:23:42Z) - Deep learning in magnetic resonance prostate segmentation: A review and
a new perspective [4.453410156617238]
We review the state-of-the-art deep learning algorithms in MR prostate segmentation.
We provide insights to the field by discussing their limitations and strengths.
We propose an optimised 2D U-Net for MR prostate segmentation.
arXiv Detail & Related papers (2020-11-16T08:58:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.