論文の概要: Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems
- arxiv url: http://arxiv.org/abs/2502.04510v1
- Date: Thu, 06 Feb 2025 21:27:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:03.350577
- Title: Heterogeneous Swarms: Jointly Optimizing Model Roles and Weights for Multi-LLM Systems
- Title(参考訳): 異種群:マルチLLMシステムにおけるモデルロールと重みの同時最適化
- Authors: Shangbin Feng, Zifeng Wang, Palash Goyal, Yike Wang, Weijia Shi, Huang Xia, Hamid Palangi, Luke Zettlemoyer, Yulia Tsvetkov, Chen-Yu Lee, Tomas Pfister,
- Abstract要約: モデルの役割と重みを協調的に最適化し,マルチLLMシステムを設計するアルゴリズムであるヘテロジニアス・スウォームを提案する。
実験により、異種群は12タスクの平均18.5%で15のロールベースおよび/またはウェイトベースラインを上回っていることが示された。
- 参考スコア(独自算出の注目度): 102.36545569092777
- License:
- Abstract: We propose Heterogeneous Swarms, an algorithm to design multi-LLM systems by jointly optimizing model roles and weights. We represent multi-LLM systems as directed acyclic graphs (DAGs) of LLMs with topological message passing for collaborative generation. Given a pool of LLM experts and a utility function, Heterogeneous Swarms employs two iterative steps: role-step and weight-step. For role-step, we interpret model roles as learning a DAG that specifies the flow of inputs and outputs between LLMs. Starting from a swarm of random continuous adjacency matrices, we decode them into discrete DAGs, call the LLMs in topological order, evaluate on the utility function (e.g. accuracy on a task), and optimize the adjacency matrices with particle swarm optimization based on the utility score. For weight-step, we assess the contribution of individual LLMs in the multi-LLM systems and optimize model weights with swarm intelligence. We propose JFK-score to quantify the individual contribution of each LLM in the best-found DAG of the role-step, then optimize model weights with particle swarm optimization based on the JFK-score. Experiments demonstrate that Heterogeneous Swarms outperforms 15 role- and/or weight-based baselines by 18.5% on average across 12 tasks. Further analysis reveals that Heterogeneous Swarms discovers multi-LLM systems with heterogeneous model roles and substantial collaborative gains, and benefits from the diversity of language models.
- Abstract(参考訳): モデルの役割と重みを協調的に最適化し,マルチLLMシステムを設計するアルゴリズムであるヘテロジニアス・スウォームを提案する。
我々は,複数LLMシステムを協調生成のためのトポロジ的メッセージパッシングを備えたLLMの有向非巡回グラフ(DAG)として表現する。
LLMの専門家のプールと実用機能が与えられたら、Heterogeneous Swarmsは2つの反復的なステップ(ロールステップとウェイトステップ)を採用する。
ロールステップでは、LLM間の入力と出力の流れを特定するDAGの学習としてモデルの役割を解釈する。
ランダムな連続隣接行列のスワムから、それらを離散DAGにデコードし、LLMをトポロジ的順序で呼び出し、実用性関数(例えばタスクの精度)を評価し、実用性スコアに基づいた粒子スワム最適化により隣接行列を最適化する。
重み付けのために,マルチLLMシステムにおける個々のLLMの寄与を評価し,Swarmインテリジェンスを用いたモデルウェイトを最適化する。
本稿では,ロールステップの最良のDAGにおける各LSMの個々の寄与を定量化するためにJFKスコアを提案し,JFKスコアに基づく粒子群最適化によるモデルウェイトを最適化する。
実験により、異種群は12タスクの平均18.5%で15のロールベースおよび/またはウェイトベースラインを上回っていることが示された。
さらに分析したところ、不均一なSwarmsは異種モデルの役割と実質的な協調的なゲインを持つマルチLLMシステムを発見し、言語モデルの多様性から恩恵を受けることがわかった。
関連論文リスト
- MALT: Improving Reasoning with Multi-Agent LLM Training [64.13803241218886]
推論問題に対するマルチエージェントLLMトレーニング(MALT)に向けた第一歩を提示する。
提案手法では,ヘテロジニアスLSMが割り当てられた逐次的マルチエージェント構成を用いる。
我々は,MATH,GSM8k,CQAにまたがるアプローチを評価し,MALT on Llama 3.1 8Bモデルでそれぞれ14.14%,7.12%,9.40%の相対的な改善を実現した。
論文 参考訳(メタデータ) (2024-12-02T19:30:36Z) - LLM-based Optimization of Compound AI Systems: A Survey [64.39860384538338]
複合AIシステムでは、LLMコール、レトリバー、コードインタプリタ、ツールなどのコンポーネントが相互接続される。
近年の進歩により, LLM を用いたパラメータのエンドツーエンド最適化が可能となった。
本稿では,複合AIシステムのLCMに基づく最適化の原理と動向について述べる。
論文 参考訳(メタデータ) (2024-10-21T18:06:25Z) - Model Swarms: Collaborative Search to Adapt LLM Experts via Swarm Intelligence [90.91152752062546]
我々は,Swarmインテリジェンスを介してLLMを適応させる協調探索アルゴリズムであるModel Swarmsを提案する。
モデルSwarmsは、LLMの専門家を1つのタスク、マルチタスクドメイン、報酬モデル、そして多様な人間の興味に柔軟に適用できることを示します。
論文 参考訳(メタデータ) (2024-10-15T00:59:17Z) - Model-GLUE: Democratized LLM Scaling for A Large Model Zoo in the Wild [84.57103623507082]
本稿では,全体論的な大規模言語モデルスケーリングガイドラインであるModel-GLUEを紹介する。
既存のスケーリングテクニック,特に選択的マージ,および混合の変種をベンチマークする。
次に、異種モデル動物園の選択と集約のための最適な戦略を定式化する。
我々の手法は、マージ可能なモデルのクラスタリング、最適なマージ戦略選択、クラスタの統合を含む。
論文 参考訳(メタデータ) (2024-10-07T15:55:55Z) - SelectLLM: Query-Aware Efficient Selection Algorithm for Large Language Models [8.558834738072363]
大規模言語モデル(LLM)は、様々なアプリケーションで顕著なパフォーマンスのために広く採用されている。
これらの個々のLCMは、固有のトレーニングバイアス、モデルサイズ制約、トレーニング前のデータセットの品質や多様性による、複雑なタスクの一般化とパフォーマンスの制限を示す。
本稿では,入力クエリをLLMの最も適切なサブセットに効率的に誘導するSelectLLMを紹介する。
論文 参考訳(メタデータ) (2024-08-16T06:11:21Z) - Ensemble Learning for Heterogeneous Large Language Models with Deep Parallel Collaboration [39.35476224845088]
大規模言語モデル(LLM)は様々なタスクにおいて補完的な強みを示し、LLMアンサンブルの研究を動機付けている。
本稿では,各復号ステップで異なるLLMから得られる情報的確率分布を融合した学習自由アンサンブルフレームワークDeePEnを提案する。
論文 参考訳(メタデータ) (2024-04-19T08:52:22Z) - LLM-PQ: Serving LLM on Heterogeneous Clusters with Phase-Aware Partition
and Adaptive Quantization [9.517540904818986]
本稿では、不均一GPUクラスタ上でのLCM機能効率を改善するために、適応モデル量子化と位相認識分割を提案する。
11の異なるクラスタでのプロダクション推論ワークロードの実験は、LLM-PQが推論のスループットを最大2.88倍(2.26倍)向上させることを示した。
論文 参考訳(メタデータ) (2024-03-02T08:40:07Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
マルチエージェントシステムにおける学習に有効なモデルベース強化学習アルゴリズムを提案する。
我々の理論的な貢献は、MFCのモデルベース強化学習における最初の一般的な後悔の限界である。
コア最適化問題の実用的なパラメトリゼーションを提供する。
論文 参考訳(メタデータ) (2021-07-08T18:01:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。