Unifying and Optimizing Data Values for Selection via Sequential-Decision-Making
- URL: http://arxiv.org/abs/2502.04554v1
- Date: Thu, 06 Feb 2025 23:03:10 GMT
- Title: Unifying and Optimizing Data Values for Selection via Sequential-Decision-Making
- Authors: Hongliang Chi, Qiong Wu, Zhengyi Zhou, Jonathan Light, Emily Dodwell, Yao Ma,
- Abstract summary: We show that data values applied for selection can be reformulated as a sequential-decision-making problem.
We propose an efficient approximation scheme using learned bipartite graphs as surrogate utility models.
- Score: 5.755427480127593
- License:
- Abstract: Data selection has emerged as a crucial downstream application of data valuation. While existing data valuation methods have shown promise in selection tasks, the theoretical foundations and full potential of using data values for selection remain largely unexplored. In this work, we first demonstrate that data values applied for selection can be naturally reformulated as a sequential-decision-making problem, where the optimal data value can be derived through dynamic programming. We show this framework unifies and reinterprets existing methods like Data Shapley through the lens of approximate dynamic programming, specifically as myopic reward function approximations to this sequential problem. Furthermore, we analyze how sequential data selection optimality is affected when the ground-truth utility function exhibits monotonic submodularity with curvature. To address the computational challenges in obtaining optimal data values, we propose an efficient approximation scheme using learned bipartite graphs as surrogate utility models, ensuring greedy selection is still optimal when the surrogate utility is correctly specified and learned. Extensive experiments demonstrate the effectiveness of our approach across diverse datasets.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DsDm: Model-Aware Dataset Selection with Datamodels [81.01744199870043]
Standard practice is to filter for examples that match human notions of data quality.
We find that selecting according to similarity with "high quality" data sources may not increase (and can even hurt) performance compared to randomly selecting data.
Our framework avoids handpicked notions of data quality, and instead models explicitly how the learning process uses train datapoints to predict on the target tasks.
arXiv Detail & Related papers (2024-01-23T17:22:00Z) - Fast Classification with Sequential Feature Selection in Test Phase [1.1470070927586016]
This paper introduces a novel approach to active feature acquisition for classification.
It is the task of sequentially selecting the most informative subset of features to achieve optimal prediction performance.
The proposed approach involves a new lazy model that is significantly faster and more efficient compared to existing methods.
arXiv Detail & Related papers (2023-06-25T21:31:46Z) - Data-Driven Offline Decision-Making via Invariant Representation
Learning [97.49309949598505]
offline data-driven decision-making involves synthesizing optimized decisions with no active interaction.
A key challenge is distributional shift: when we optimize with respect to the input into a model trained from offline data, it is easy to produce an out-of-distribution (OOD) input that appears erroneously good.
In this paper, we formulate offline data-driven decision-making as domain adaptation, where the goal is to make accurate predictions for the value of optimized decisions.
arXiv Detail & Related papers (2022-11-21T11:01:37Z) - Compactness Score: A Fast Filter Method for Unsupervised Feature
Selection [66.84571085643928]
We propose a fast unsupervised feature selection method, named as, Compactness Score (CSUFS) to select desired features.
Our proposed algorithm seems to be more accurate and efficient compared with existing algorithms.
arXiv Detail & Related papers (2022-01-31T13:01:37Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z) - Joint Adaptive Graph and Structured Sparsity Regularization for
Unsupervised Feature Selection [6.41804410246642]
We propose a joint adaptive graph and structured sparsity regularization unsupervised feature selection (JASFS) method.
A subset of optimal features will be selected in group, and the number of selected features will be determined automatically.
Experimental results on eight benchmarks demonstrate the effectiveness and efficiency of the proposed method.
arXiv Detail & Related papers (2020-10-09T08:17:04Z) - Consistent and Flexible Selectivity Estimation for High-Dimensional Data [23.016360687961193]
We propose a new deep learning-based model that learns a query-dependent piecewise linear function as selectivity estimator.
We show that the proposed model consistently outperforms state-of-the-art models in accuracy in an efficient way.
arXiv Detail & Related papers (2020-05-20T08:24:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.