論文の概要: TruthFlow: Truthful LLM Generation via Representation Flow Correction
- arxiv url: http://arxiv.org/abs/2502.04556v1
- Date: Thu, 06 Feb 2025 23:10:14 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:54.430994
- Title: TruthFlow: Truthful LLM Generation via Representation Flow Correction
- Title(参考訳): 真理流:表現フロー補正による真理LLM生成
- Authors: Hanyu Wang, Bochuan Cao, Yuanpu Cao, Jinghui Chen,
- Abstract要約: 大規模言語モデル(LLM)は、一貫して真理応答を生成するのに苦労していることが知られている。
本稿では,クエリ固有の真理表現補正にFlow Matching技術を活用する新しい方法であるTruthFlowを紹介する。
- 参考スコア(独自算出の注目度): 16.637010524662667
- License:
- Abstract: Large language models (LLMs) are known to struggle with consistently generating truthful responses. While various representation intervention techniques have been proposed, these methods typically apply a universal representation correction vector to all input queries, limiting their effectiveness against diverse queries in practice. In this study, we introduce TruthFlow, a novel method that leverages the Flow Matching technique for query-specific truthful representation correction. Specifically, TruthFlow first uses a flow model to learn query-specific correction vectors that transition representations from hallucinated to truthful states. Then, during inference, the trained flow model generates these correction vectors to enhance the truthfulness of LLM outputs. Experimental results demonstrate that TruthFlow significantly improves performance on open-ended generation tasks across various advanced LLMs evaluated on TruthfulQA. Moreover, the trained TruthFlow model exhibits strong transferability, performing effectively on other unseen hallucination benchmarks.
- Abstract(参考訳): 大規模言語モデル(LLM)は、一貫して真理応答を生成するのに苦労していることが知られている。
様々な表現介入手法が提案されているが、これらの手法は典型的には全ての入力クエリに普遍的な表現補正ベクトルを適用し、実際は様々なクエリに対する有効性を制限している。
本研究では,クエリ固有の真理表現補正にフローマッチング技術を活用する新しい方法であるTrathFlowを紹介する。
具体的には、TrathFlowはまずフローモデルを使用して、幻覚状態から真理状態へ表現を遷移するクエリ固有の補正ベクトルを学習する。
そして、予測中、トレーニングされたフローモデルがこれらの補正ベクトルを生成し、LLM出力の真偽性を高める。
実験結果から,TrathfulQAで評価した各種先進LLMにおいて,TruthFlowはオープンエンド生成タスクの性能を著しく向上することが示された。
さらに、訓練されたTrathFlowモデルは、強い伝達可能性を示し、他の見えない幻覚ベンチマークで効果的に機能する。
関連論文リスト
- Real-time Verification and Refinement of Language Model Text Generation [60.04718679054704]
大規模言語モデル(LLM)は、幅広い自然言語タスクにおいて顕著な性能を示している。
重要な課題は、時に事実的に誤った答えを生じさせることである。
本稿では,LLM出力の検証と改善の効率化を目的とした新しい手法であるStreaming-VRを提案する。
論文 参考訳(メタデータ) (2025-01-14T03:59:48Z) - CaLMFlow: Volterra Flow Matching using Causal Language Models [14.035963716966787]
CaLMFlowはVolterra積分方程式(VIE)としてフローマッチングをキャストするフレームワークである
本手法は,空間と時間にまたがるトークン化を実現し,これらの領域上でVIEを解く。
単一セル摂動応答予測を含む合成および実世界のデータに対するCaLMFlowの有効性を実証する。
論文 参考訳(メタデータ) (2024-10-03T05:07:41Z) - Improving Factuality in Large Language Models via Decoding-Time Hallucinatory and Truthful Comparators [14.705475420665117]
大きな言語モデル(LLM)は、検証可能な事実に矛盾する応答を生成する傾向がある。
応答幻覚を軽減するために,比較器駆動型復号時間(CDT)フレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-22T12:00:31Z) - Through the Thicket: A Study of Number-Oriented LLMs derived from Random Forest Models [0.0]
大規模言語モデル (LLM) はテキスト処理において例外的な性能を示した。
本稿では,ランダムフォレスト(RF)アンサンブルからの知識伝達を用いたLLMの学習手法を提案する。
我々は、細調整のためのアウトプットを生成し、その決定を分類し、説明するモデルの能力を高めます。
論文 参考訳(メタデータ) (2024-06-07T13:31:51Z) - DETAIL: Task DEmonsTration Attribution for Interpretable In-context Learning [75.68193159293425]
インコンテキスト学習(ICL)により、トランスフォーマーベースの言語モデルでは、パラメータを更新することなく、いくつかの"タスクデモ"で特定のタスクを学習することができる。
ICLの特徴に対処する影響関数に基づく帰属手法DETAILを提案する。
ホワイトボックスモデルで得られた属性スコアがブラックボックスモデルに転送可能であることを示すことにより、モデル性能を向上させる上で、DETAILの広範な適用性を実験的に証明する。
論文 参考訳(メタデータ) (2024-05-22T15:52:52Z) - Enhanced Language Model Truthfulness with Learnable Intervention and Uncertainty Expression [19.69104070561701]
大きな言語モデル(LLM)は長文で一貫性のあるテキストを生成することができるが、事実を幻覚させることが多い。
真性最適化のための学習可能なインターベンション手法であるLITOを提案する。
複数のLLMと質問応答データセットの実験は、LITOがタスク精度を維持しながら真理性を改善することを示した。
論文 参考訳(メタデータ) (2024-05-01T03:50:09Z) - Language Rectified Flow: Advancing Diffusion Language Generation with Probabilistic Flows [53.31856123113228]
本稿では,言語認識フロー (ours) を提案する。
本手法は, 標準確率流モデルの再構成に基づく。
実験およびアブレーション実験により,本手法は多くのNLPタスクに対して汎用的,効果的,有益であることが示されている。
論文 参考訳(メタデータ) (2024-03-25T17:58:22Z) - GRATH: Gradual Self-Truthifying for Large Language Models [63.502835648056305]
GRATH(Gradual Self-Truthifying)は,大規模言語モデル(LLM)の真偽性を高めるためのポストプロセッシング手法である。
GRATHは、反復的に真理データを洗練し、モデルを更新する。
GRATHはTruthfulQAの最先端性能を達成し、MC1の精度は54.71%、MC2の精度は69.10%であり、70B-LLMよりも高い。
論文 参考訳(メタデータ) (2024-01-22T19:00:08Z) - DoLa: Decoding by Contrasting Layers Improves Factuality in Large
Language Models [79.01926242857613]
大型言語モデル(LLM)は幻覚を起こす傾向があり、事前訓練中に見られる事実から逸脱した内容を生成する。
事前学習したLLMによる幻覚を低減するための簡単な復号法を提案する。
コントラスティング・レイヤ(DoLa)アプローチによるこのデコーディングは,事実知識をよりよく提示し,誤った事実の生成を減らすことができる。
論文 参考訳(メタデータ) (2023-09-07T17:45:31Z) - Explaining Emergent In-Context Learning as Kernel Regression [61.57151500616111]
大規模言語モデル(LLM)は、伝達学習のパラダイムシフトを開始した。
本稿では,トランスフォーマーに基づく言語モデルが事前学習後に文脈内学習を達成できる理由について検討する。
ICL中、LLMの注意と隠れた特徴は、カーネル回帰の挙動と一致していることがわかった。
論文 参考訳(メタデータ) (2023-05-22T06:45:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。