Mixture of neural operator experts for learning boundary conditions and model selection
- URL: http://arxiv.org/abs/2502.04562v1
- Date: Thu, 06 Feb 2025 23:29:32 GMT
- Title: Mixture of neural operator experts for learning boundary conditions and model selection
- Authors: Dwyer Deighan, Jonas A. Actor, Ravi G. Patel,
- Abstract summary: We introduce an alternative approach to imposing boundary conditions inspired by volume penalization from numerical methods.<n>By introducing competing experts, the approach additionally allows for model selection.
- Score: 0.40964539027092917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While Fourier-based neural operators are best suited to learning mappings between functions on periodic domains, several works have introduced techniques for incorporating non trivial boundary conditions. However, all previously introduced methods have restrictions that limit their applicability. In this work, we introduce an alternative approach to imposing boundary conditions inspired by volume penalization from numerical methods and Mixture of Experts (MoE) from machine learning. By introducing competing experts, the approach additionally allows for model selection. To demonstrate the method, we combine a spatially conditioned MoE with the Fourier based, Modal Operator Regression for Physics (MOR-Physics) neural operator and recover a nonlinear operator on a disk and quarter disk. Next, we extract a large eddy simulation (LES) model from direct numerical simulation of channel flow and show the domain decomposition provided by our approach. Finally, we train our LES model with Bayesian variational inference and obtain posterior predictive samples of flow far past the DNS simulation time horizon.
Related papers
- PMNO: A novel physics guided multi-step neural operator predictor for partial differential equations [23.04840527974364]
We propose a novel physics guided multi-step neural operator (PMNO) architecture to address challenges in long-horizon prediction of complex physical systems.<n>The PMNO framework replaces the single-step input with multi-step historical data in the forward pass and introduces an implicit time-stepping scheme during backpropagation.<n>We demonstrate the superior predictive performance of PMNO predictor across a diverse range of physical systems.
arXiv Detail & Related papers (2025-06-02T12:33:50Z) - Ambient Noise Full Waveform Inversion with Neural Operators [11.44207799108199]
Recent studies have shown that a new class of machine learning models, called neural operators, can solve the elastodynamic wave equation orders of magnitude faster than conventional methods.
We demonstrate the first application of neural operators for full waveform inversion on a real seismic dataset.
arXiv Detail & Related papers (2025-03-19T09:10:43Z) - Implicit factorized transformer approach to fast prediction of turbulent channel flows [6.70175842351963]
We introduce a modified implicit factorized transformer (IFactFormer-m) model which replaces the original chained factorized attention with parallel factorized attention.<n>The IFactFormer-m model successfully performs long-term predictions for turbulent channel flow.
arXiv Detail & Related papers (2024-12-25T09:05:14Z) - Boundary-Decoder network for inverse prediction of capacitor electrostatic analysis [0.49157446832511503]
We propose an end-to-end deep learning approach to model parameter changes to the boundary conditions.<n>It is shown that our method can significantly outperform both plain vanilla deep learning (NN) and physics informed neural net (PINN) under dynamic boundary condition.
arXiv Detail & Related papers (2024-11-28T05:51:00Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - The Convex Landscape of Neural Networks: Characterizing Global Optima
and Stationary Points via Lasso Models [75.33431791218302]
Deep Neural Network Network (DNN) models are used for programming purposes.
In this paper we examine the use of convex neural recovery models.
We show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
We also show that all the stationary non-dimensional objective objective can be characterized as the standard a global subsampled convex solvers program.
arXiv Detail & Related papers (2023-12-19T23:04:56Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
An AI framework, known as Neural Operators, presents a principled framework for learning mappings between functions defined on continuous domains.
Neural Operators can augment or even replace existing simulators in many applications, such as computational fluid dynamics, weather forecasting, and material modeling.
arXiv Detail & Related papers (2023-09-27T00:12:07Z) - Fast Sampling of Diffusion Models via Operator Learning [74.37531458470086]
We use neural operators, an efficient method to solve the probability flow differential equations, to accelerate the sampling process of diffusion models.
Compared to other fast sampling methods that have a sequential nature, we are the first to propose a parallel decoding method.
We show our method achieves state-of-the-art FID of 3.78 for CIFAR-10 and 7.83 for ImageNet-64 in the one-model-evaluation setting.
arXiv Detail & Related papers (2022-11-24T07:30:27Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
We present a novel method that combines a hyper-network solver with a Fourier Neural Operator architecture.
We test our method on various time evolution PDEs, including nonlinear fluid flows in one, two, and three spatial dimensions.
The results show that the new method improves the learning accuracy at the time point of supervision point, and is able to interpolate and the solutions to any intermediate time.
arXiv Detail & Related papers (2022-07-28T19:59:14Z) - Learning Deep Implicit Fourier Neural Operators (IFNOs) with
Applications to Heterogeneous Material Modeling [3.9181541460605116]
We propose to use data-driven modeling to predict a material's response without using conventional models.
The material response is modeled by learning the implicit mappings between loading conditions and the resultant displacement and/or damage fields.
We demonstrate the performance of our proposed method for a number of examples, including hyperelastic, anisotropic and brittle materials.
arXiv Detail & Related papers (2022-03-15T19:08:13Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Long-time integration of parametric evolution equations with
physics-informed DeepONets [0.0]
We introduce an effective framework for learning infinite-dimensional operators that map random initial conditions to associated PDE solutions within a short time interval.
Global long-time predictions across a range of initial conditions can be then obtained by iteratively evaluating the trained model.
This introduces a new approach to temporal domain decomposition that is shown to be effective in performing accurate long-time simulations.
arXiv Detail & Related papers (2021-06-09T20:46:17Z) - Scalable nonparametric Bayesian learning for heterogeneous and dynamic
velocity fields [8.744017403796406]
We develop a model for learning heterogeneous and dynamic patterns of velocity field data.
We show the effectiveness of our techniques to the NGSIM dataset of complex multi-vehicle interactions.
arXiv Detail & Related papers (2021-02-15T17:45:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.