論文の概要: Agentic Reasoning: A Streamlined Framework for Enhancing LLM Reasoning with Agentic Tools
- arxiv url: http://arxiv.org/abs/2502.04644v2
- Date: Mon, 14 Jul 2025 20:06:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-16 15:29:04.064533
- Title: Agentic Reasoning: A Streamlined Framework for Enhancing LLM Reasoning with Agentic Tools
- Title(参考訳): Agentic Reasoning: A Streamlined Framework for Enhancing LLM Reasoning with Agentic Tools
- Authors: Junde Wu, Jiayuan Zhu, Yuyuan Liu, Min Xu, Yueming Jin,
- Abstract要約: 本稿では,外部ツール利用エージェントを統合することで,大規模言語モデル(LLM)推論を強化するフレームワークであるAgentic Reasoningを紹介する。
私たちのフレームワークにおける重要な革新はMind-Mapエージェントです。
DeepSeek-R1にデプロイすると、パブリックモデル間で新しいSOTA(State-of-the-art)を実現する。
- 参考スコア(独自算出の注目度): 19.70178343422698
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce Agentic Reasoning, a framework that enhances large language model (LLM) reasoning by integrating external tool-using agents. Agentic Reasoning dynamically leverages web search, code execution, and structured memory to address complex problems requiring deep research. A key innovation in our framework is the Mind-Map agent, which constructs a structured knowledge graph to store reasoning context and track logical relationships, ensuring coherence in long reasoning chains with extensive tool usage. Additionally, we conduct a comprehensive exploration of the Web-Search agent, leading to a highly effective search mechanism that surpasses all prior approaches. When deployed on DeepSeek-R1, our method achieves a new state-of-the-art (SOTA) among public models and delivers performance comparable to OpenAI Deep Research, the leading proprietary model in this domain. Extensive ablation studies validate the optimal selection of agentic tools and confirm the effectiveness of our Mind-Map and Web-Search agents in enhancing LLM reasoning. The code is at: https://github.com/theworldofagents/Agentic-Reasoning
- Abstract(参考訳): 本稿では,外部ツール利用エージェントを統合することで,大規模言語モデル(LLM)推論を強化するフレームワークであるAgentic Reasoningを紹介する。
Agentic Reasoningは、Web検索、コード実行、構造化メモリを動的に利用して、深い研究を必要とする複雑な問題に対処する。
私たちのフレームワークにおける重要な革新は、Mind-Mapエージェントである。このエージェントは、構造化された知識グラフを構築し、推論コンテキストを格納し、論理的関係を追跡し、広範囲なツール使用を伴う長い推論チェーンにおけるコヒーレンスを確保する。
さらに、Web-Searchエージェントを網羅的に探索し、従来のすべてのアプローチを超越した、非常に効果的な検索機構を実現する。
DeepSeek-R1にデプロイすると、パブリックモデル間の新しい最先端(SOTA)を実現し、このドメインの主要なプロプライエタリモデルであるOpenAI Deep Researchに匹敵するパフォーマンスを提供する。
広範囲にわたるアブレーション研究により, エージェントツールの最適選択が検証され, LLM推論の強化におけるMind-MapおよびWeb-Searchエージェントの有効性が検証された。
コードは以下の通り。 https://github.com/theworldofagents/Agentic-Reasoning
関連論文リスト
- TURA: Tool-Augmented Unified Retrieval Agent for AI Search [18.427511565701394]
従来のRAGアプローチは、リアルタイムのニーズと構造化クエリに苦労する。
本稿では,静的コンテンツと動的リアルタイム情報の両方にアクセスするために,RAGとエージェントツールを併用した新しい3段階フレームワークTURAを紹介する。
論文 参考訳(メタデータ) (2025-08-06T16:24:17Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - WebCoT: Enhancing Web Agent Reasoning by Reconstructing Chain-of-Thought in Reflection, Branching, and Rollback [74.82886755416949]
有効なWebエージェントに必要な重要な推論スキルを同定する。
我々はエージェントの推論アルゴリズムを連鎖論理に再構成する。
このアプローチは、複数のベンチマークで大幅に改善される。
論文 参考訳(メタデータ) (2025-05-26T14:03:37Z) - WebThinker: Empowering Large Reasoning Models with Deep Research Capability [60.81964498221952]
WebThinkerは、大規模な推論モデルに、Webを自律的に検索し、Webページをナビゲートし、推論プロセス中に研究レポートをドラフトする権限を与えるディープリサーチエージェントである。
また、textbf Autonomous Think-Search-and-Draft戦略を採用しており、モデルがシームレスに推論、情報収集、レポート作成をリアルタイムで行うことができる。
我々のアプローチは複雑なシナリオにおけるLEMの信頼性と適用性を高め、より有能で多目的な深層研究システムへの道を開く。
論文 参考訳(メタデータ) (2025-04-30T16:25:25Z) - A Survey of Frontiers in LLM Reasoning: Inference Scaling, Learning to Reason, and Agentic Systems [93.8285345915925]
推論(Reasoning)は、論理的推論、問題解決、意思決定を可能にする基本的な認知プロセスである。
大規模言語モデル(LLM)の急速な進歩により、推論は高度なAIシステムを区別する重要な能力として浮上した。
我々は,(1)推論が達成される段階を定義するレジーム,(2)推論プロセスに関与するコンポーネントを決定するアーキテクチャの2つの側面に沿って既存の手法を分類する。
論文 参考訳(メタデータ) (2025-04-12T01:27:49Z) - Large Language Model Agent: A Survey on Methodology, Applications and Challenges [88.3032929492409]
大きな言語モデル(LLM)エージェントは、目標駆動の振る舞いと動的適応能力を持ち、人工知能への重要な経路を示す可能性がある。
本調査は, LLMエージェントシステムを方法論中心の分類法により体系的に分解する。
私たちの作業は、エージェントの構築方法、コラボレーション方法、時間の経過とともにどのように進化するか、という、統一されたアーキテクチャの視点を提供します。
論文 参考訳(メタデータ) (2025-03-27T12:50:17Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [54.787341008881036]
Reinforced Meta-thinking Agents(ReMA)は,MARL(Multi-Agent Reinforcement Learning)を利用したメタ思考行動の抽出手法である。
ReMAは、推論プロセスを2つの階層的なエージェントに分解する。戦略上の監視と計画を生成するハイレベルなメタ思考エージェントと、詳細な実行のための低レベルな推論エージェントである。
実験の結果、ReMAは複雑な推論タスクにおいて単一エージェントRLベースラインよりも優れていた。
論文 参考訳(メタデータ) (2025-03-12T16:05:31Z) - Search-o1: Agentic Search-Enhanced Large Reasoning Models [24.239220558484373]
OpenAI-o1のような大きな推論モデル(LRM)は、大規模な強化学習を通じて、大きなステップワイズ推論能力を実証している。
エージェント検索拡張生成(RAG)機構とReason-in-Documentsモジュールを併用し,LRMを強化するフレームワークである textbfSearch-o1 を紹介する。
論文 参考訳(メタデータ) (2025-01-09T16:48:17Z) - RAG-Star: Enhancing Deliberative Reasoning with Retrieval Augmented Verification and Refinement [85.08223786819532]
既存の大規模言語モデル(LLM)は、例外的な問題解決能力を示すが、複雑な推論タスクに苦労する可能性がある。
検索情報を統合した新しいRAG手法である textbfRAG-Star を提案する。
Llama-3.1-8B-Instruct と GPT-4o を併用した実験により,RAG-Star は従来のRAG と推理法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2024-12-17T13:05:36Z) - Enhancing LLM Reasoning with Reward-guided Tree Search [95.06503095273395]
o1のような推論アプローチは困難で、研究者はこのオープンな研究領域を前進させようとさまざまな試みを行ってきた。
本稿では,報酬誘導木探索アルゴリズムを用いて,LLMの推論能力を高めるための予備的な検討を行う。
論文 参考訳(メタデータ) (2024-11-18T16:15:17Z) - Make LLMs better zero-shot reasoners: Structure-orientated autonomous reasoning [52.83539473110143]
本稿では,Large Language Models (LLM) の質問をよりよく理解するための構造指向分析手法を提案する。
複雑な質問応答タスクの信頼性をさらに向上するために,多エージェント推論システム,構造指向自律推論エージェント(SARA)を提案する。
大規模な実験により,提案システムの有効性が検証された。
論文 参考訳(メタデータ) (2024-10-18T05:30:33Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Diagnostic Reasoning in Natural Language: Computational Model and Application [68.47402386668846]
言語基底タスク(NL-DAR)の文脈における診断誘導推論(DAR)について検討する。
パール構造因果モデルに基づくNL-DARの新しいモデリングフレームワークを提案する。
得られたデータセットを用いて,NL-DARにおける人間の意思決定過程を解析する。
論文 参考訳(メタデータ) (2024-09-09T06:55:37Z) - Multi-step Inference over Unstructured Data [2.169874047093392]
医療、法律、金融などの分野における高い意思決定タスクは、精度、包括性、論理的一貫性のレベルを必要とする。
これらの問題に対処するための,ニューロシンボリックAIプラットフォームを開発した。
このプラットフォームは、知識抽出とアライメントのための微調整LDMと、堅牢なシンボリック推論エンジンを統合している。
論文 参考訳(メタデータ) (2024-06-26T00:00:45Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Complex Logical Reasoning over Knowledge Graphs using Large Language Models [13.594992599230277]
知識グラフ(KG)に対する推論は、エンティティ間の関係を深く理解する必要がある課題である。
現在のアプローチは、論理的なクエリ操作のために、ベクトル空間にエンティティを埋め込むための学習ジオメトリに依存している。
本稿では,文脈的KG探索と論理的クエリ推論を組み合わせた複雑なKG推論を定式化する,言語誘導型知識グラフによる抽象推論(LARK)を提案する。
論文 参考訳(メタデータ) (2023-05-02T02:21:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。