論文の概要: TURA: Tool-Augmented Unified Retrieval Agent for AI Search
- arxiv url: http://arxiv.org/abs/2508.04604v1
- Date: Wed, 06 Aug 2025 16:24:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-08-07 20:09:22.822549
- Title: TURA: Tool-Augmented Unified Retrieval Agent for AI Search
- Title(参考訳): TURA:AI検索のためのツール強化された統一検索エージェント
- Authors: Zhejun Zhao, Yuehu Dong, Alley Liu, Lixue Zheng, Pingsheng Liu, Dongdong Shen, Long Xia, Jiashu Zhao, Dawei Yin,
- Abstract要約: 従来のRAGアプローチは、リアルタイムのニーズと構造化クエリに苦労する。
本稿では,静的コンテンツと動的リアルタイム情報の両方にアクセスするために,RAGとエージェントツールを併用した新しい3段階フレームワークTURAを紹介する。
- 参考スコア(独自算出の注目度): 18.427511565701394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The advent of Large Language Models (LLMs) is transforming search engines into conversational AI search products, primarily using Retrieval-Augmented Generation (RAG) on web corpora. However, this paradigm has significant industrial limitations. Traditional RAG approaches struggle with real-time needs and structured queries that require accessing dynamically generated content like ticket availability or inventory. Limited to indexing static pages, search engines cannot perform the interactive queries needed for such time-sensitive data. Academic research has focused on optimizing RAG for static content, overlooking complex intents and the need for dynamic sources like databases and real-time APIs. To bridge this gap, we introduce TURA (Tool-Augmented Unified Retrieval Agent for AI Search), a novel three-stage framework that combines RAG with agentic tool-use to access both static content and dynamic, real-time information. TURA has three key components: an Intent-Aware Retrieval module to decompose queries and retrieve information sources encapsulated as Model Context Protocol (MCP) Servers, a DAG-based Task Planner that models task dependencies as a Directed Acyclic Graph (DAG) for optimal parallel execution, and a lightweight Distilled Agent Executor for efficient tool calling. TURA is the first architecture to systematically bridge the gap between static RAG and dynamic information sources for a world-class AI search product. Serving tens of millions of users, it leverages an agentic framework to deliver robust, real-time answers while meeting the low-latency demands of a large-scale industrial system.
- Abstract(参考訳): 大規模言語モデル(LLMs)の出現は、検索エンジンを対話型AI検索製品に転換し、主にウェブコーパス上でRAG(Retrieval-Augmented Generation)を用いている。
しかし、このパラダイムには大きな工業的制約がある。
従来のRAGアプローチは、チケットの可用性や在庫といった動的に生成されたコンテンツへのアクセスを必要とするリアルタイムのニーズと構造化されたクエリに苦労する。
静的ページのインデックス化に限り、検索エンジンはそのような時間に敏感なデータに必要な対話的なクエリを実行できない。
学術研究は、静的コンテンツに対するRAGの最適化、複雑な意図を見渡すこと、データベースやリアルタイムAPIのような動的ソースの必要性に焦点を当てている。
このギャップを埋めるために、我々はTURA(Tool-Augmented Unified Retrieval Agent for AI Search)を紹介します。
TURAには、クエリを分解し、MCP(Model Context Protocol)サーバとしてカプセル化された情報ソースを取得するIntent-Aware Retrievalモジュール、最適な並列実行のためのDirected Acyclic Graph(DAG)としてタスク依存をモデル化するDAGベースのタスクプランナ、効率的なツール呼び出しのための軽量のDistilled Agent Executorの3つの主要なコンポーネントがある。
TURAは、世界クラスのAI検索製品の静的RAGと動的情報ソースのギャップを体系的に埋める最初のアーキテクチャである。
数千万人のユーザを抱える同社は、エージェント的なフレームワークを活用して、大規模産業システムの低レイテンシ要求を満たしながら、堅牢でリアルタイムな回答を提供する。
関連論文リスト
- Benchmarking Deep Search over Heterogeneous Enterprise Data [73.55304268238474]
検索強化生成(RAG)の形式を評価するための新しいベンチマークを提案する。
RAGは、多種多様な、しかし関連するソースに対して、ソースを意識したマルチホップ推論を必要とする。
製品計画、開発、サポートステージをまたいだビジネスをシミュレートする合成データパイプラインを使用して構築します。
論文 参考訳(メタデータ) (2025-06-29T08:34:59Z) - Leveraging LLM-Assisted Query Understanding for Live Retrieval-Augmented Generation [6.62734677678023]
実世界のライブ検索拡張生成(RAG)システムは、ノイズがありあいまいで、複数の意図を含むユーザクエリを処理する場合、課題に直面します。
本稿では,オープンドメイン環境におけるRAGシステムの堅牢性と有効性向上を目的とした新しいフレームワークであるOmni-RAGを紹介する。
論文 参考訳(メタデータ) (2025-06-26T15:35:12Z) - MMSearch-R1: Incentivizing LMMs to Search [49.889749277236376]
MMSearch-R1は,実世界のインターネット環境において,オンデマンドでマルチターン検索が可能な,初のエンドツーエンド強化学習フレームワークである。
本フレームワークは画像検索とテキスト検索の両方を統合し,検索ペナルティによる結果に基づく報酬によって,モデルがいつ,どのように呼び出すかの判断を可能にする。
論文 参考訳(メタデータ) (2025-06-25T17:59:42Z) - From Web Search towards Agentic Deep Research: Incentivizing Search with Reasoning Agents [96.65646344634524]
推論とエージェント能力を備えた大規模言語モデル(LLM)は、エージェントディープリサーチ(Agenic Deep Research)と呼ばれる新しいパラダイムを取り入れている。
静的なWeb検索から,計画,探索,学習を行う対話型エージェントベースのシステムへの進化を辿ります。
我々はエージェントディープリサーチが既存のアプローチを著しく上回るだけでなく、将来の情報探索において支配的なパラダイムになることを実証する。
論文 参考訳(メタデータ) (2025-06-23T17:27:19Z) - Deep Research Agents: A Systematic Examination And Roadmap [79.04813794804377]
Deep Research (DR) エージェントは複雑な多ターン情報研究タスクに取り組むように設計されている。
本稿では,DRエージェントを構成する基礎技術とアーキテクチャコンポーネントの詳細な分析を行う。
論文 参考訳(メタデータ) (2025-06-22T16:52:48Z) - ImpRAG: Retrieval-Augmented Generation with Implicit Queries [49.510101132093396]
ImpRAGは、検索と生成を統一モデルに統合するクエリフリーなRAGシステムである。
我々は、ImpRAGが、多様な形式を持つ未確認タスクの正確なマッチスコアを3.6-11.5改善したことを示す。
論文 参考訳(メタデータ) (2025-06-02T21:38:21Z) - HM-RAG: Hierarchical Multi-Agent Multimodal Retrieval Augmented Generation [11.53083922927901]
HM-RAGは階層型マルチエージェントマルチモーダルRAGフレームワークである。
構造化、非構造化、グラフベースのデータ間での動的知識合成のための協調知能の先駆者である。
論文 参考訳(メタデータ) (2025-04-13T06:55:33Z) - Agentic Retrieval-Augmented Generation: A Survey on Agentic RAG [0.8463972278020965]
大規模言語モデル(LLM)は、人間のようなテキスト生成や自然言語理解を可能にすることによって、人工知能(AI)に革命をもたらした。
Retrieval Augmented Generation (RAG) がソリューションとして登場し、リアルタイムデータ検索を統合して文脈に関連のある応答を提供することでLLMを強化している。
Agentic Retrieval-Augmented Generation (RAG)は、自律的なAIエージェントをRAGパイプラインに埋め込むことによって、これらの制限を超越する。
論文 参考訳(メタデータ) (2025-01-15T20:40:25Z) - QuIM-RAG: Advancing Retrieval-Augmented Generation with Inverted Question Matching for Enhanced QA Performance [1.433758865948252]
本研究では,RAG(Retrieval-Augmented Generation)システム構築のための新しいアーキテクチャを提案する。
RAGアーキテクチャは、ターゲット文書から応答を生成するために構築される。
本稿では,本システムにおける検索機構の新しいアプローチQuIM-RAGを紹介する。
論文 参考訳(メタデータ) (2025-01-06T01:07:59Z) - STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases [93.96463520716759]
テキストと知識ベースを用いた大規模半構造検索ベンチマークSTARKを開発した。
本ベンチマークでは, 製品検索, 学術論文検索, 精密医療におけるクエリの3分野について検討した。
多様なリレーショナル情報と複雑なテキスト特性を統合した,現実的なユーザクエリを合成する,新しいパイプラインを設計する。
論文 参考訳(メタデータ) (2024-04-19T22:54:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。