論文の概要: Cross-Encoder Rediscovers a Semantic Variant of BM25
- arxiv url: http://arxiv.org/abs/2502.04645v1
- Date: Fri, 07 Feb 2025 04:08:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:13.641971
- Title: Cross-Encoder Rediscovers a Semantic Variant of BM25
- Title(参考訳): クロスエンコーダがBM25のセマンティックバリアントを再検討
- Authors: Meng Lu, Catherine Chen, Carsten Eickhoff,
- Abstract要約: そこで本研究では,MiniLMのクロスエンコーダ(Cross-Encoder)バージョンについて検討し,その関連性や格納場所について検討する。
従来のBM25のセマンティックなバリエーションを解釈可能な方法で採用し、局所的なコンポーネントを特徴とする。
- 参考スコア(独自算出の注目度): 20.670511323837626
- License:
- Abstract: Neural Ranking Models (NRMs) have rapidly advanced state-of-the-art performance on information retrieval tasks. In this work, we investigate a Cross-Encoder variant of MiniLM to determine which relevance features it computes and where they are stored. We find that it employs a semantic variant of the traditional BM25 in an interpretable manner, featuring localized components: (1) Transformer attention heads that compute soft term frequency while controlling for term saturation and document length effects, and (2) a low-rank component of its embedding matrix that encodes inverse document frequency information for the vocabulary. This suggests that the Cross-Encoder uses the same fundamental mechanisms as BM25, but further leverages their capacity to capture semantics for improved retrieval performance. The granular understanding lays the groundwork for model editing to enhance model transparency, addressing safety concerns, and improving scalability in training and real-world applications.
- Abstract(参考訳): ニューラルランキングモデル(NRM)は、情報検索タスクにおける最先端のパフォーマンスを急速に向上させた。
そこで本研究では,MiniLMのクロスエンコーダ変種について検討し,それがどの関連性を計算し,どこに格納されているかを決定する。
1) 単語飽和や文書長効果を制御しながらソフトターム周波数を演算するトランスフォーマーアテンションヘッド,(2) 語彙の逆文書頻度情報を符号化する埋め込み行列の低ランク成分である。
これは、Cross-EncoderがBM25と同じ基本的なメカニズムを使用していることを示唆するが、その能力を利用してセマンティクスをキャプチャし、検索性能を向上させることを示唆している。
詳細な理解は、モデルの透明性を高め、安全性の懸念に対処し、トレーニングや実世界のアプリケーションにおけるスケーラビリティを向上させるために、モデル編集の基盤となる。
関連論文リスト
- MERLOT: A Distilled LLM-based Mixture-of-Experts Framework for Scalable Encrypted Traffic Classification [19.476061046309052]
本稿では,暗号化されたトラフィック分類に最適化された蒸留大言語モデルのスケーラブルな混合実験(MoE)による改良について述べる。
10のデータセットの実験では、最先端モデルよりも優れた、あるいは競合的なパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-11-20T03:01:41Z) - MacFormer: Semantic Segmentation with Fine Object Boundaries [38.430631361558426]
新しいセマンティックセグメンテーションアーキテクチャであるMacFormer'を導入する。
まず、学習可能なエージェントトークンを使用することで、Mutual Agent Cross-Attention(MACA)メカニズムは、エンコーダ層とデコーダ層をまたいだ機能の双方向統合を効果的に実現する。
第二に、デコーダ内の周波数拡張モジュール(FEM)は高周波および低周波成分を活用して周波数領域の特徴を高める。
MacFormerはさまざまなネットワークアーキテクチャと互換性があり、ADE20KベンチマークとCityscapesの精度と効率の両方で既存のメソッドより優れていることが示されている。
論文 参考訳(メタデータ) (2024-08-11T05:36:10Z) - CSFNet: A Cosine Similarity Fusion Network for Real-Time RGB-X Semantic Segmentation of Driving Scenes [0.0]
マルチモーダルなセマンティックセグメンテーション手法は、高い計算複雑性と低い推論速度に悩まされる。
本稿では,リアルタイムRGB-XセマンティックセマンティックセグメンテーションモデルとしてCosine similarity Fusion Network (CSFNet)を提案する。
CSFNetは最先端の手法と競合する精度を持ち、速度に関しては最先端の手法である。
論文 参考訳(メタデータ) (2024-07-01T14:34:32Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
本稿では,強化学習に基づくエージェント駆動型ジェネリックセマンティックコミュニケーションフレームワークを提案する。
本研究では, エージェント支援型セマンティックエンコーダを開発し, 適応的セマンティック抽出とサンプリングを行う。
設計モデルの有効性をUA-DETRACデータセットを用いて検証し、全体的なA-GSCフレームワークの性能向上を実証した。
論文 参考訳(メタデータ) (2024-04-10T13:24:27Z) - Mobile-Seed: Joint Semantic Segmentation and Boundary Detection for
Mobile Robots [17.90723909170376]
セマンティックセグメンテーションと境界検出を同時に行う軽量なフレームワークであるMobile-Seedを紹介する。
我々のフレームワークは、2ストリームエンコーダ、アクティブフュージョンデコーダ(AFD)、デュアルタスク正規化アプローチを備えている。
Cityscapesデータセットの実験によると、Mobile-Seedは最先端(SOTA)ベースラインよりも顕著に改善されている。
論文 参考訳(メタデータ) (2023-11-21T14:53:02Z) - Incrementally-Computable Neural Networks: Efficient Inference for
Dynamic Inputs [75.40636935415601]
ディープラーニングは、センサーデータやユーザ入力などの動的入力を効率的に処理するという課題に直面していることが多い。
インクリメンタルな計算アプローチを採用し、入力の変化に応じて計算を再利用する。
本稿では,この手法をトランスフォーマーアーキテクチャに適用し,修正入力の分数に比例した複雑性を持つ効率的なインクリメンタル推論アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-07-27T16:30:27Z) - Object Segmentation by Mining Cross-Modal Semantics [68.88086621181628]
マルチモーダル特徴の融合と復号を導くために,クロスモーダル・セマンティックスをマイニングする手法を提案する。
具体的には,(1)全周減衰核融合(AF),(2)粗大デコーダ(CFD),(3)多層自己超越からなる新しいネットワークXMSNetを提案する。
論文 参考訳(メタデータ) (2023-05-17T14:30:11Z) - Co-Driven Recognition of Semantic Consistency via the Fusion of
Transformer and HowNet Sememes Knowledge [6.184249194474601]
本稿では,Transformer と HowNet のセメム知識の融合に基づく協調型意味的一貫性認識手法を提案する。
BiLSTMは概念的意味情報をエンコードし、意味的一貫性を推測するために利用される。
論文 参考訳(メタデータ) (2023-02-21T09:53:19Z) - Joint Spatial-Temporal and Appearance Modeling with Transformer for
Multiple Object Tracking [59.79252390626194]
本稿ではTransSTAMという新しい手法を提案する。Transformerを利用して各オブジェクトの外観特徴とオブジェクト間の空間的時間的関係の両方をモデル化する。
提案手法はMOT16, MOT17, MOT20を含む複数の公開ベンチマークで評価され, IDF1とHOTAの両方で明確な性能向上を実現している。
論文 参考訳(メタデータ) (2022-05-31T01:19:18Z) - Unsupervised Motion Representation Learning with Capsule Autoencoders [54.81628825371412]
Motion Capsule Autoencoder (MCAE) は、2レベル階層のモーションをモデル化する。
MCAEは、新しいTrajectory20モーションデータセットと、様々な現実世界の骨格に基づく人間のアクションデータセットで評価されている。
論文 参考訳(メタデータ) (2021-10-01T16:52:03Z) - Rethinking Semantic Segmentation from a Sequence-to-Sequence Perspective
with Transformers [149.78470371525754]
セマンティックセグメンテーションをシーケンスからシーケンスへの予測タスクとして扱う。
具体的には、イメージをパッチのシーケンスとしてエンコードするために純粋なトランスをデプロイします。
トランスのすべての層でモデル化されたグローバルコンテキストにより、このエンコーダは、SETR(SEgmentation TRansformer)と呼ばれる強力なセグメンテーションモデルを提供するための単純なデコーダと組み合わせることができる。
SETRはADE20K(50.28% mIoU)、Pascal Context(55.83% mIoU)、およびCityscapesの競争力のある結果に関する最新技術を達成している。
論文 参考訳(メタデータ) (2020-12-31T18:55:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。