Nearly Tight Bounds for Cross-Learning Contextual Bandits with Graphical Feedback
- URL: http://arxiv.org/abs/2502.04678v1
- Date: Fri, 07 Feb 2025 05:52:56 GMT
- Title: Nearly Tight Bounds for Cross-Learning Contextual Bandits with Graphical Feedback
- Authors: Ruiyuan Huang, Zengfeng Huang,
- Abstract summary: Cross-learning contextual bandit problem with graphical feedback has attracted significant attention.
Key theoretical question is whether an algorithm with $widetildeO(sqrtalpha T)$ regret exists.
- Score: 17.43748116766233
- License:
- Abstract: The cross-learning contextual bandit problem with graphical feedback has recently attracted significant attention. In this setting, there is a contextual bandit with a feedback graph over the arms, and pulling an arm reveals the loss for all neighboring arms in the feedback graph across all contexts. Initially proposed by Han et al. (2024), this problem has broad applications in areas such as bidding in first price auctions, and explores a novel frontier in the feedback structure of bandit problems. A key theoretical question is whether an algorithm with $\widetilde{O}(\sqrt{\alpha T})$ regret exists, where $\alpha$ represents the independence number of the feedback graph. This question is particularly interesting because it concerns whether an algorithm can achieve a regret bound entirely independent of the number of contexts and matching the minimax regret of vanilla graphical bandits. Previous work has demonstrated that such an algorithm is impossible for adversarial contexts, but the question remains open for stochastic contexts. In this work, we affirmatively answer this open question by presenting an algorithm that achieves the minimax $\widetilde{O}(\sqrt{\alpha T})$ regret for cross-learning contextual bandits with graphical feedback and stochastic contexts. Notably, although that question is open even for stochastic bandits, we directly solve the strictly stronger adversarial bandit version of the problem.
Related papers
- Graph Feedback Bandits on Similar Arms: With and Without Graph Structures [49.02207254933986]
We study the multi-armed bandit problem with graph feedback.
We introduce two upper confidence bound (UCB)-based algorithms.
We extend these two UCB-based algorithms to the ballooning setting.
arXiv Detail & Related papers (2025-01-24T08:15:45Z) - Bridging Rested and Restless Bandits with Graph-Triggering: Rising and Rotting [67.1631453378926]
Graph-Triggered Bandits is a framework to generalize rested and restless bandits.
In this work, we focus on two specific types of monotonic bandits: rising, where the expected reward of an arm grows as the number of triggers increases, and rotting, where the opposite behavior occurs.
arXiv Detail & Related papers (2024-09-09T18:23:07Z) - Feel-Good Thompson Sampling for Contextual Dueling Bandits [49.450050682705026]
We propose a Thompson sampling algorithm, named FGTS.CDB, for linear contextual dueling bandits.
At the core of our algorithm is a new Feel-Good exploration term specifically tailored for dueling bandits.
Our algorithm achieves nearly minimax-optimal regret, i.e., $tildemathcalO(dsqrt T)$, where $d$ is the model dimension and $T$ is the time horizon.
arXiv Detail & Related papers (2024-04-09T04:45:18Z) - Stochastic contextual bandits with graph feedback: from independence number to MAS number [28.10186884181921]
We consider contextual bandits with graph feedback.
Unlike the multi-armed bandits setting, much remains unexplored in the contextual bandits counterpart.
We provide algorithms that achieve near-optimal regret for important classes of context sequences and/or feedback graphs.
arXiv Detail & Related papers (2024-02-12T06:56:13Z) - Optimal cross-learning for contextual bandits with unknown context
distributions [28.087360479901978]
We consider the problem of designing contextual bandit algorithms in the cross-learning'' setting of Balseiro et al.
We provide an efficient algorithm with a nearly tight (up to logarithmic factors) regret bound of $widetildeO(sqrtTK)$, independent of the number of contexts.
At the core of our algorithm is a novel technique for coordinating the execution of an algorithm over multiple epochs.
arXiv Detail & Related papers (2024-01-03T18:02:13Z) - Online Learning with Feedback Graphs: The True Shape of Regret [82.00098840619847]
We prove that the minimax regret is proportional to $R*$ for any graph and time horizon $T$.
Introducing an intricate exploration strategy, we define the mainAlgorithm algorithm that achieves the minimax optimal regret bound.
arXiv Detail & Related papers (2023-06-05T15:35:00Z) - Contexts can be Cheap: Solving Stochastic Contextual Bandits with Linear
Bandit Algorithms [39.70492757288025]
We address the contextual linear bandit problem, where a decision maker is provided a context.
We show that the contextual problem can be solved as a linear bandit problem.
Our results imply a $O(dsqrtTlog T)$ high-probability regret bound for contextual linear bandits.
arXiv Detail & Related papers (2022-11-08T22:18:53Z) - Improved Algorithms for Bandit with Graph Feedback via Regret
Decomposition [2.3034251503343466]
The problem of bandit with graph feedback generalizes both the multi-armed bandit (MAB) problem and the learning with expert advice problem.
We propose a new algorithmic framework for the problem based on a partition of the feedback graph.
arXiv Detail & Related papers (2022-05-30T13:07:42Z) - Complete Policy Regret Bounds for Tallying Bandits [51.039677652803675]
Policy regret is a well established notion of measuring the performance of an online learning algorithm against an adaptive adversary.
We study restrictions on the adversary that enable efficient minimization of the emphcomplete policy regret
We provide an algorithm that w.h.p a complete policy regret guarantee of $tildemathcalO(mKsqrtT)$, where the $tildemathcalO$ notation hides only logarithmic factors.
arXiv Detail & Related papers (2022-04-24T03:10:27Z) - Adversarial Linear Contextual Bandits with Graph-Structured Side
Observations [80.95090605985042]
A learning agent repeatedly chooses from a set of $K$ actions after being presented with a $d$-dimensional context vector.
The agent incurs and observes the loss of the chosen action, but also observes the losses of its neighboring actions in the observation structures.
Two efficient algorithms are developed based on textttEXP3.
arXiv Detail & Related papers (2020-12-10T15:40:07Z) - Contextual Blocking Bandits [35.235375147227124]
We study a novel variant of the multi-armed bandit problem, where at each time step, the player observes an independently sampled context that determines the arms' mean rewards.
Playing an arm blocks it (across all contexts) for a fixed and known number of future time steps.
We propose a UCB-based variant of the full-information algorithm that guarantees a $mathcalO(log T)$-regret w.r.t. an $alpha$regret strategy in $T time steps, matching the $Omega(log(T)$ lower bound
arXiv Detail & Related papers (2020-03-06T20:34:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.