論文の概要: Bridging the Gap in XAI-Why Reliable Metrics Matter for Explainability and Compliance
- arxiv url: http://arxiv.org/abs/2502.04695v1
- Date: Fri, 07 Feb 2025 06:54:48 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:18.537909
- Title: Bridging the Gap in XAI-Why Reliable Metrics Matter for Explainability and Compliance
- Title(参考訳): XAIにおけるギャップを埋める -説明可能性とコンプライアンスのために-
- Authors: Pratinav Seth, Vinay Kumar Sankarapu,
- Abstract要約: この論文は、標準化された信頼性のあるメトリクスが欠如していることから、説明可能なAI(XAI)の評価における重要なギャップを強調している。
現在の評価手法は、しばしば断片化され、主観的、偏見的であり、複雑なモデルの評価を操作し複雑にする傾向がある。
我々は、堅牢で文脈に敏感な評価指標を開発するための広範な研究を提唱する。
- 参考スコア(独自算出の注目度): 2.3020018305241337
- License:
- Abstract: This position paper emphasizes the critical gap in the evaluation of Explainable AI (XAI) due to the lack of standardized and reliable metrics, which diminishes its practical value, trustworthiness, and ability to meet regulatory requirements. Current evaluation methods are often fragmented, subjective, and biased, making them prone to manipulation and complicating the assessment of complex models. A central issue is the absence of a ground truth for explanations, complicating comparisons across various XAI approaches. To address these challenges, we advocate for widespread research into developing robust, context-sensitive evaluation metrics. These metrics should be resistant to manipulation, relevant to each use case, and based on human judgment and real-world applicability. We also recommend creating domain-specific evaluation benchmarks that align with the user and regulatory needs of sectors such as healthcare and finance. By encouraging collaboration among academia, industry, and regulators, we can create standards that balance flexibility and consistency, ensuring XAI explanations are meaningful, trustworthy, and compliant with evolving regulations.
- Abstract(参考訳): 本稿では、標準化された信頼性のあるメトリクスが欠如していることから、説明可能なAI(XAI)の評価において、その実用的価値、信頼性、規制要件を満たす能力の欠如が強調される。
現在の評価手法は、しばしば断片化され、主観的、偏見的であり、複雑なモデルの評価を操作し複雑にする傾向がある。
中心的な問題は、説明のための基礎的な真実がないことであり、様々なXAIアプローチの比較を複雑にしている。
これらの課題に対処するため、ロバストで文脈に敏感な評価指標を開発するための広範な研究を提唱する。
これらのメトリクスは操作に耐性があり、それぞれのユースケースに関連するもので、人間の判断と現実の応用性に基づいているべきです。
また、医療や金融といった分野のユーザや規制のニーズに合わせて、ドメイン固有の評価ベンチマークを作成することも推奨します。
学術、産業、規制機関の協力を奨励することで、柔軟性と一貫性のバランスをとる標準を作成し、XAIの説明が有意義で信頼性があり、進化する規制に準拠していることを保証できます。
関連論文リスト
- On the Trustworthiness of Generative Foundation Models: Guideline, Assessment, and Perspective [314.7991906491166]
Generative Foundation Models (GenFMs) がトランスフォーメーションツールとして登場した。
彼らの広く採用されていることは、次元の信頼に関する重要な懸念を提起する。
本稿では,3つの主要なコントリビューションを通じて,これらの課題に対処するための包括的枠組みを提案する。
論文 参考訳(メタデータ) (2025-02-20T06:20:36Z) - Can We Trust AI Benchmarks? An Interdisciplinary Review of Current Issues in AI Evaluation [2.2241228857601727]
本稿では,定量的なベンチマーク手法の欠点を論じる,約100の学術研究の学際的メタレビューを示す。
これは、より広範な社会技術的問題を伴うベンチマークの設計と適用において、多くのきめ細かい問題をもたらす。
レビューではまた、不正なインセンティブ、妥当性の問題の構築、未知の未知、ベンチマーク結果のゲームに関する問題など、現在のプラクティスにおける一連のシステム的欠陥についても取り上げている。
論文 参考訳(メタデータ) (2025-02-10T15:25:06Z) - A Unified Framework for Evaluating the Effectiveness and Enhancing the Transparency of Explainable AI Methods in Real-World Applications [2.0681376988193843]
AIモデルの特徴である"ブラックボックス"は、解釈可能性、透明性、信頼性を制約する。
本研究では,AIモデルによる説明の正確性,解釈可能性,堅牢性,公正性,完全性を評価するための統合XAI評価フレームワークを提案する。
論文 参考訳(メタデータ) (2024-12-05T05:30:10Z) - Ethical and Scalable Automation: A Governance and Compliance Framework for Business Applications [0.0]
本稿では、AIが倫理的で、制御可能で、実行可能で、望ましいものであることを保証するフレームワークを紹介する。
異なるケーススタディは、学術と実践の両方の環境でAIを統合することで、このフレームワークを検証する。
論文 参考訳(メタデータ) (2024-09-25T12:39:28Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Goodhart's Law Applies to NLP's Explanation Benchmarks [57.26445915212884]
ERASER(Comprehensiveness and sufficiency)メトリクスとEVAL-X(EVAL-X)メトリクスの2つのセットを批判的に検討する。
実験結果の予測や説明を変えることなく,モデル全体の包括性と充足率を劇的に向上させることができることを示す。
我々の結果は、現在のメトリクスが説明可能性の研究をガイドする能力に疑問を呈し、これらのメトリクスが正確に捉えるものを再評価する必要性を強調します。
論文 参考訳(メタデータ) (2023-08-28T03:03:03Z) - Auditing and Generating Synthetic Data with Controllable Trust Trade-offs [54.262044436203965]
合成データセットとAIモデルを包括的に評価する総合監査フレームワークを導入する。
バイアスや差別の防止、ソースデータへの忠実性の確保、実用性、堅牢性、プライバシ保護などに焦点を当てている。
多様なユースケースにまたがる様々な生成モデルを監査することにより,フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-21T09:03:18Z) - The Meta-Evaluation Problem in Explainable AI: Identifying Reliable
Estimators with MetaQuantus [10.135749005469686]
説明可能なAI(XAI)分野における未解決課題の1つは、説明方法の品質を最も確実に見積もる方法を決定することである。
我々は、XAIの異なる品質推定器のメタ評価を通じてこの問題に対処する。
我々の新しいフレームワークMetaQuantusは、品質推定器の2つの相補的な性能特性を解析する。
論文 参考訳(メタデータ) (2023-02-14T18:59:02Z) - Towards a multi-stakeholder value-based assessment framework for
algorithmic systems [76.79703106646967]
我々は、価値間の近さと緊張を可視化する価値に基づくアセスメントフレームワークを開発する。
我々は、幅広い利害関係者に評価と検討のプロセスを開放しつつ、それらの運用方法に関するガイドラインを提示する。
論文 参考訳(メタデータ) (2022-05-09T19:28:32Z) - GO FIGURE: A Meta Evaluation of Factuality in Summarization [131.1087461486504]
本稿では,現実性評価指標を評価するメタ評価フレームワークGO FIGUREを紹介する。
10個の実測値のベンチマーク分析により、我々のフレームワークが堅牢で効率的な評価を提供することが明らかとなった。
また、QAメトリクスは、ドメイン間の事実性を測定する標準的なメトリクスよりも一般的に改善されているが、パフォーマンスは、質問を生成する方法に大きく依存していることも明らかにしている。
論文 参考訳(メタデータ) (2020-10-24T08:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。