Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
- URL: http://arxiv.org/abs/2502.04758v1
- Date: Fri, 07 Feb 2025 08:45:00 GMT
- Title: Differential Privacy of Quantum and Quantum-Inspired-Classical Recommendation Algorithms
- Authors: Chenjian Li, Mingsheng Ying,
- Abstract summary: We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm.
We find that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise.
A comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
- Score: 2.36119616330904
- License:
- Abstract: We analyze the DP (differential privacy) properties of the quantum recommendation algorithm and the quantum-inspired-classical recommendation algorithm. We discover that the quantum recommendation algorithm is a privacy curating mechanism on its own, requiring no external noise, which is different from traditional differential privacy mechanisms. In our analysis, a novel perturbation method tailored for SVD (singular value decomposition) and low-rank matrix approximation problems is introduced. Using the perturbation method and random matrix theory, we are able to derive that both the quantum and quantum-inspired-classical algorithms are $\big(\tilde{\mathcal{O}}\big(\frac 1n\big),\,\, \tilde{\mathcal{O}}\big(\frac{1}{\min\{m,n\}}\big)\big)$-DP under some reasonable restrictions, where $m$ and $n$ are numbers of users and products in the input preference database respectively. Nevertheless, a comparison shows that the quantum algorithm has better privacy preserving potential than the classical one.
Related papers
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
Recently proposed quantum algorithm arXiv:2206.14999 is based on semidefinite programming (SDP)
We generalize the SDP-inspired quantum algorithm to sum-of-squares.
Our results show that our algorithm is suitable for large problems and approximate the best known classicals.
arXiv Detail & Related papers (2024-08-14T19:04:13Z) - Generalized quantum Arimoto-Blahut algorithm and its application to
quantum information bottleneck [55.22418739014892]
We generalize the quantum Arimoto-Blahut algorithm by Ramakrishnan et al.
We apply our algorithm to the quantum information bottleneck with three quantum systems.
Our numerical analysis shows that our algorithm is better than their algorithm.
arXiv Detail & Related papers (2023-11-19T00:06:11Z) - Detecting Violations of Differential Privacy for Quantum Algorithms [3.55689240295244]
We define a formal framework for detecting violations of differential privacy for quantum algorithms.
A noisy bugging algorithm is developed to generate information when the violation of differential privacy is reported.
Results are confirmed by the experimental results of almost all types of quantum algorithms already implemented on realistic quantum computers.
arXiv Detail & Related papers (2023-09-09T15:07:31Z) - A Universal Quantum Algorithm for Weighted Maximum Cut and Ising
Problems [0.0]
We propose a hybrid quantum-classical algorithm to compute approximate solutions of binary problems.
We employ a shallow-depth quantum circuit to implement a unitary and Hermitian operator that block-encodes the weighted maximum cut or the Ising Hamiltonian.
Measuring the expectation of this operator on a variational quantum state yields the variational energy of the quantum system.
arXiv Detail & Related papers (2023-06-10T23:28:13Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
Variational quantum algorithms constitute one of the most widespread methods for using current noisy quantum computers.
We investigate entanglement's role in these methods for solving optimization problems.
We conclude that entanglement plays a minor role in the MaxCut and Exact Cover 3 problems studied here.
arXiv Detail & Related papers (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
We introduce a variational quantum algorithm for Goemans-Williamson algorithm that uses only $n+1$ qubits.
Efficient optimization is achieved by encoding the objective matrix as a properly parameterized unitary conditioned on an auxilary qubit.
We demonstrate the effectiveness of our protocol by devising an efficient quantum implementation of the Goemans-Williamson algorithm for various NP-hard problems.
arXiv Detail & Related papers (2022-06-30T03:15:23Z) - Entanglement and coherence in Bernstein-Vazirani algorithm [58.720142291102135]
Bernstein-Vazirani algorithm allows one to determine a bit string encoded into an oracle.
We analyze in detail the quantum resources in the Bernstein-Vazirani algorithm.
We show that in the absence of entanglement, the performance of the algorithm is directly related to the amount of quantum coherence in the initial state.
arXiv Detail & Related papers (2022-05-26T20:32:36Z) - Differential Privacy Amplification in Quantum and Quantum-inspired
Algorithms [0.6827423171182154]
We provide privacy bounds amplification for quantum and quantum-inspired algorithms.
We show for the first time, that algorithms running on quantum encoding of a classical dataset amplify differential privacy.
arXiv Detail & Related papers (2022-03-07T18:55:20Z) - Quantum Optimization Heuristics with an Application to Knapsack Problems [5.866941279460248]
This paper introduces two techniques that make the standard Quantum Approximate Optimization Algorithm (QAOA) more suitable for constrained optimization problems.
The first technique describes how to use the outcome of a prior greedy classical algorithm to define an initial quantum state and mixing operation to adjust the quantum optimization algorithm to explore the possible answers around this initial greedy solution.
The second technique is used to nudge the quantum exploration to avoid the local minima around the greedy solutions.
arXiv Detail & Related papers (2021-08-19T17:22:44Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.