論文の概要: Graph Federated Learning Based Proactive Content Caching in Edge Computing
- arxiv url: http://arxiv.org/abs/2502.04760v1
- Date: Fri, 07 Feb 2025 08:48:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:54.286398
- Title: Graph Federated Learning Based Proactive Content Caching in Edge Computing
- Title(参考訳): エッジコンピューティングにおけるグラフフェデレーション学習に基づくプロアクティブコンテンツキャッシング
- Authors: Rui Wang,
- Abstract要約: 本稿では,ユーザプライバシを保護しながら,キャッシュ効率を向上させるグラフフェデレーション学習に基づくProactive Content Cachingスキームを提案する。
提案したアプローチは、フェデレーション学習とグラフニューラルネットワークを統合し、ユーザーがLight Graph Convolutional Networks(LightGCN)をローカルにトレーニングすることで、ユーザとイテムの関係を捉え、コンテンツの人気を予測する。
- 参考スコア(独自算出の注目度): 5.492113449220096
- License:
- Abstract: With the rapid growth of mobile data traffic and the increasing prevalence of video streaming, proactive content caching in edge computing has become crucial for reducing latency and alleviating network congestion. However, traditional caching strategies such as FIFO, LRU, and LFU fail to effectively predict future content popularity, while existing proactive caching approaches often require users to upload data to a central server, raising concerns regarding privacy and scalability. To address these challenges, this paper proposes a Graph Federated Learning-based Proactive Content Caching (GFPCC) scheme that enhances caching efficiency while preserving user privacy. The proposed approach integrates federated learning and graph neural networks, enabling users to locally train Light Graph Convolutional Networks (LightGCN) to capture user-item relationships and predict content popularity. Instead of sharing raw data, only the trained model parameters are transmitted to the central server, where a federated averaging algorithm aggregates updates, refines the global model, and selects the most popular files for proactive caching. Experimental evaluations on real-world datasets, such as MovieLens, demonstrate that GFPCC outperforms baseline caching algorithms by achieving higher cache efficiency through more accurate content popularity predictions. Moreover, the federated learning framework strengthens privacy protection while maintaining efficient model training; however, scalability remains a challenge in large-scale networks with dynamic user preferences.
- Abstract(参考訳): モバイルデータトラフィックの急速な増加とビデオストリーミングの普及に伴い、エッジコンピューティングにおけるプロアクティブなコンテンツキャッシュは、レイテンシの低減とネットワークの混雑軽減に不可欠になっている。
しかし、FIFO、LRU、LFUといった従来のキャッシュ戦略は、将来のコンテンツの人気を効果的に予測できない。
これらの課題に対処するために、ユーザプライバシを保護しながらキャッシュ効率を向上させるグラフフェデレーション学習に基づくProactive Content Caching(GFPCC)スキームを提案する。
提案したアプローチは、フェデレーション学習とグラフニューラルネットワークを統合し、ユーザーがLight Graph Convolutional Networks(LightGCN)をローカルにトレーニングすることで、ユーザとイテムの関係を捉え、コンテンツの人気を予測する。
生データを共有する代わりに、トレーニングされたモデルパラメータだけが中央サーバに送信される。そこでは、フェデレーション平均化アルゴリズムが更新を集約し、グローバルモデルを洗練し、アクティブなキャッシュのために最も人気のあるファイルを選択する。
MovieLensのような実世界のデータセットに対する実験的評価は、GFPCCがより正確なコンテンツ人気予測を通じて高いキャッシュ効率を達成することにより、ベースラインキャッシュアルゴリズムよりも優れていることを示した。
さらに、フェデレート学習フレームワークは、効率的なモデルトレーニングを維持しながら、プライバシ保護を強化する。
関連論文リスト
- Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
我々はD-RECと呼ばれる新しいデジタルツインアシスト最適化フレームワークを導入し、次世代無線ネットワークにおける信頼性の高いキャッシュを実現する。
信頼性モジュールを制約付き決定プロセスに組み込むことで、D-RECは、有利な制約に従うために、アクション、報酬、状態を適応的に調整することができる。
論文 参考訳(メタデータ) (2024-06-29T02:40:28Z) - Semantics-enhanced Temporal Graph Networks for Content Caching and
Energy Saving [21.693946854653785]
本稿では,DGNNモデルの時間的・構造的学習を強化するために,追加のセマンティックメッセージを利用する,STGNという時間的グラフネットワークを提案する。
また,ユーザ固有のアテンション機構を提案し,様々なセマンティクスをきめ細やかに集約する。
論文 参考訳(メタデータ) (2023-01-29T04:17:32Z) - Predictive Edge Caching through Deep Mining of Sequential Patterns in
User Content Retrievals [34.716416311132946]
本稿では,より詳細な学習モデルを用いて,将来的なコンテンツ人気を予測する新しい予測エッジキャッシング(PEC)システムを提案する。
PECは、非常にダイナミックなコンテンツの人気に適応し、キャッシュヒット率を大幅に改善し、ユーザのコンテンツ検索遅延を低減できる。
論文 参考訳(メタデータ) (2022-10-06T03:24:19Z) - Content Popularity Prediction in Fog-RANs: A Clustered Federated
Learning Based Approach [66.31587753595291]
本稿では,ローカルユーザとモバイルユーザの両面からコンテンツの人気度を統合した,モビリティに配慮した新しい人気予測ポリシーを提案する。
ローカルユーザにとって、コンテンツの人気は、ローカルユーザやコンテンツの隠された表現を学習することによって予測される。
モバイルユーザーにとって、コンテンツの人気はユーザー好みの学習によって予測される。
論文 参考訳(メタデータ) (2022-06-13T03:34:00Z) - TEDGE-Caching: Transformer-based Edge Caching Towards 6G Networks [30.160404936777947]
6Gネットワークにおけるモバイルエッジキャッシュ(MEC)は,グローバルなモバイルデータトラフィックの驚くべき成長に対応するための効率的なソリューションとして進化してきた。
近年のディープニューラルネットワーク(DNN)の進歩は、プロアクティブキャッシュ方式におけるコンテンツ人気を予測するために、多くの研究が注目されている。
本稿では,注目に基づく視覚変換(ViT)ニューラルネットワークを組み込んだエッジキャッシュフレームワークを提案する。
論文 参考訳(メタデータ) (2021-12-01T16:38:18Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
MECネットワークにおけるデバイスのキャッシュヒット率を最大化するために,プライバシ保護型分散ディープポリシー勾配(P2D3PG)を提案する。
分散最適化をモデルフリーなマルコフ決定プロセス問題に変換し、人気予測のためのプライバシー保護フェデレーション学習手法を導入する。
論文 参考訳(メタデータ) (2021-10-20T02:48:27Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
本稿では,プロアクティブキャッシングのための新しいフレームワークを提案する。
モデルベースの最適化とデータ駆動技術を組み合わせて、最適化問題をグレースケールのイメージに変換する。
数値計算の結果,提案手法は71.6%の計算時間を0.8%のコストで削減できることがわかった。
論文 参考訳(メタデータ) (2021-08-15T21:32:47Z) - A Survey of Deep Learning for Data Caching in Edge Network [1.9798034349981157]
本稿では,エッジネットワークにおけるデータキャッシングにおけるディープラーニングの利用について要約する。
まず、コンテンツキャッシングにおける典型的な研究トピックを概説し、ネットワーク階層構造に基づく分類を定式化する。
次に、教師なし学習から教師なし学習、強化学習まで、多くの重要なディープラーニングアルゴリズムが提示される。
論文 参考訳(メタデータ) (2020-08-17T12:02:32Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
本稿では,非直交多重アクセス(NOMA)をサポートした大規模アクセス機能を有する無人航空機(UAV)セルネットワークについて検討する。
コンテンツ配信遅延最小化のための長期キャッシュ配置と資源配分最適化問題をマルコフ決定プロセス(MDP)として定式化する。
そこで我々は,UAVがemphsoft $varepsilon$-greedy戦略を用いて行動の学習と選択を行い,行動と状態の最適な一致を探索する,Qラーニングに基づくキャッシュ配置とリソース割り当てアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-12T08:33:51Z) - Reinforcement Learning for Caching with Space-Time Popularity Dynamics [61.55827760294755]
キャッシングは次世代ネットワークにおいて重要な役割を果たすと想定されている。
コンテンツをインテリジェントにプリフェッチし、保存するためには、キャッシュノードは、何といつキャッシュするかを学ばなければならない。
本章では、近似キャッシングポリシー設計のための多目的強化学習に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-19T01:23:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。