Graph Federated Learning Based Proactive Content Caching in Edge Computing
- URL: http://arxiv.org/abs/2502.04760v1
- Date: Fri, 07 Feb 2025 08:48:06 GMT
- Title: Graph Federated Learning Based Proactive Content Caching in Edge Computing
- Authors: Rui Wang,
- Abstract summary: This paper proposes a Graph Federated Learning-based Proactive Content Caching scheme that enhances caching efficiency while preserving user privacy.
The proposed approach integrates federated learning and graph neural networks, enabling users to locally train Light Graph Convolutional Networks (LightGCN) to capture user-item relationships and predict content popularity.
- Score: 5.492113449220096
- License:
- Abstract: With the rapid growth of mobile data traffic and the increasing prevalence of video streaming, proactive content caching in edge computing has become crucial for reducing latency and alleviating network congestion. However, traditional caching strategies such as FIFO, LRU, and LFU fail to effectively predict future content popularity, while existing proactive caching approaches often require users to upload data to a central server, raising concerns regarding privacy and scalability. To address these challenges, this paper proposes a Graph Federated Learning-based Proactive Content Caching (GFPCC) scheme that enhances caching efficiency while preserving user privacy. The proposed approach integrates federated learning and graph neural networks, enabling users to locally train Light Graph Convolutional Networks (LightGCN) to capture user-item relationships and predict content popularity. Instead of sharing raw data, only the trained model parameters are transmitted to the central server, where a federated averaging algorithm aggregates updates, refines the global model, and selects the most popular files for proactive caching. Experimental evaluations on real-world datasets, such as MovieLens, demonstrate that GFPCC outperforms baseline caching algorithms by achieving higher cache efficiency through more accurate content popularity predictions. Moreover, the federated learning framework strengthens privacy protection while maintaining efficient model training; however, scalability remains a challenge in large-scale networks with dynamic user preferences.
Related papers
- Digital Twin-Assisted Data-Driven Optimization for Reliable Edge Caching in Wireless Networks [60.54852710216738]
We introduce a novel digital twin-assisted optimization framework, called D-REC, to ensure reliable caching in nextG wireless networks.
By incorporating reliability modules into a constrained decision process, D-REC can adaptively adjust actions, rewards, and states to comply with advantageous constraints.
arXiv Detail & Related papers (2024-06-29T02:40:28Z) - Semantics-enhanced Temporal Graph Networks for Content Caching and
Energy Saving [21.693946854653785]
We propose a reformative temporal graph network, named STGN, that utilizes extra semantic messages to enhance the temporal and structural learning of a DGNN model.
We also propose a user-specific attention mechanism to fine-grainedly aggregate various semantics.
arXiv Detail & Related papers (2023-01-29T04:17:32Z) - Predictive Edge Caching through Deep Mining of Sequential Patterns in
User Content Retrievals [34.716416311132946]
We propose a novel Predictive Edge Caching (PEC) system that predicts the future content popularity using fine-grained learning models.
PEC can adapt to highly dynamic content popularity, and significantly improve cache hit ratio and reduce user content retrieval latency.
arXiv Detail & Related papers (2022-10-06T03:24:19Z) - Content Popularity Prediction in Fog-RANs: A Clustered Federated
Learning Based Approach [66.31587753595291]
We propose a novel mobility-aware popularity prediction policy, which integrates content popularities in terms of local users and mobile users.
For local users, the content popularity is predicted by learning the hidden representations of local users and contents.
For mobile users, the content popularity is predicted via user preference learning.
arXiv Detail & Related papers (2022-06-13T03:34:00Z) - TEDGE-Caching: Transformer-based Edge Caching Towards 6G Networks [30.160404936777947]
Mobile Edge Caching (MEC) in the 6G networks has been evolved as an efficient solution to meet the phenomenal growth of the global mobile data traffic.
Recent advancements in Deep Neural Networks (DNNs) have drawn much research attention to predict the content popularity in proactive caching schemes.
We propose an edge caching framework incorporated with the attention-based Vision Transformer (ViT) neural network, referred to as the Transformer-based Edge (TEDGE) caching.
arXiv Detail & Related papers (2021-12-01T16:38:18Z) - Distributed Reinforcement Learning for Privacy-Preserving Dynamic Edge
Caching [91.50631418179331]
A privacy-preserving distributed deep policy gradient (P2D3PG) is proposed to maximize the cache hit rates of devices in the MEC networks.
We convert the distributed optimizations into model-free Markov decision process problems and then introduce a privacy-preserving federated learning method for popularity prediction.
arXiv Detail & Related papers (2021-10-20T02:48:27Z) - Learning from Images: Proactive Caching with Parallel Convolutional
Neural Networks [94.85780721466816]
A novel framework for proactive caching is proposed in this paper.
It combines model-based optimization with data-driven techniques by transforming an optimization problem into a grayscale image.
Numerical results show that the proposed scheme can reduce 71.6% computation time with only 0.8% additional performance cost.
arXiv Detail & Related papers (2021-08-15T21:32:47Z) - A Survey of Deep Learning for Data Caching in Edge Network [1.9798034349981157]
This paper summarizes the utilization of deep learning for data caching in edge network.
We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure.
Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning.
arXiv Detail & Related papers (2020-08-17T12:02:32Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA)
We formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP)
We propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emphsoft $varepsilon$-greedy strategy to search for the optimal match between actions and states.
arXiv Detail & Related papers (2020-08-12T08:33:51Z) - Reinforcement Learning for Caching with Space-Time Popularity Dynamics [61.55827760294755]
caching is envisioned to play a critical role in next-generation networks.
To intelligently prefetch and store contents, a cache node should be able to learn what and when to cache.
This chapter presents a versatile reinforcement learning based approach for near-optimal caching policy design.
arXiv Detail & Related papers (2020-05-19T01:23:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.