論文の概要: Probing Internal Representations of Multi-Word Verbs in Large Language Models
- arxiv url: http://arxiv.org/abs/2502.04789v1
- Date: Fri, 07 Feb 2025 09:49:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:56:56.979640
- Title: Probing Internal Representations of Multi-Word Verbs in Large Language Models
- Title(参考訳): 大規模言語モデルにおける複数単語動詞の内部表現の提案
- Authors: Hassane Kissane, Achim Schilling, Patrick Krauss,
- Abstract要約: 本研究では,大言語モデル(LLM)における多語動詞と呼ばれる動詞-粒子の組み合わせの内部表現について検討する。
我々は,2つの異なる動詞-粒子構成において,各階層の表象を解析する。例えば,'give up'のようなフレーズ動詞と,'look at'のような前置動詞である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study investigates the internal representations of verb-particle combinations, called multi-word verbs, within transformer-based large language models (LLMs), specifically examining how these models capture lexical and syntactic properties at different neural network layers. Using the BERT architecture, we analyze the representations of its layers for two different verb-particle constructions: phrasal verbs like 'give up' and prepositional verbs like 'look at'. Our methodology includes training probing classifiers on the internal representations to classify these categories at both word and sentence levels. The results indicate that the model's middle layers achieve the highest classification accuracies. To further analyze the nature of these distinctions, we conduct a data separability test using the Generalized Discrimination Value (GDV). While GDV results show weak linear separability between the two verb types, probing classifiers still achieve high accuracy, suggesting that representations of these linguistic categories may be non-linearly separable. This aligns with previous research indicating that linguistic distinctions in neural networks are not always encoded in a linearly separable manner. These findings computationally support usage-based claims on the representation of verb-particle constructions and highlight the complex interaction between neural network architectures and linguistic structures.
- Abstract(参考訳): 本研究では,変圧器を用いた大言語モデル(LLM)における多語動詞の組み合わせの内部表現について検討し,これらのモデルが異なるニューラルネットワーク層における語彙的・構文的特性をいかに捉えているかを検討した。
BERTアーキテクチャを用いて,2つの異なる動詞粒子構造に対して,各階層の表現を解析する。
本手法は,これらのカテゴリを単語レベルと文レベルの両方で分類するために,内部表現における探索的分類器の訓練を含む。
その結果,モデルの中間層が最も高い分類精度が得られた。
これらの特徴を更に分析するために、一般化識別値(GDV)を用いてデータ分離性試験を行う。
GDVの結果は2つの動詞タイプ間の線形分離性が弱いが、プローブ分類器は依然として高い精度を達成しており、これらの言語カテゴリーの表現は非線形分離可能であることを示唆している。
これは、ニューラルネットワークの言語的区別が必ずしも線形に分離可能な方法でコード化されているとは限らないことを示す以前の研究と一致している。
これらの知見は, 動詞粒子構成の表現に関する使用法に基づく主張を計算的に支援し, ニューラルネットワークアーキテクチャと言語構造との複雑な相互作用を強調した。
関連論文リスト
- Analysis and Visualization of Linguistic Structures in Large Language Models: Neural Representations of Verb-Particle Constructions in BERT [0.0]
本研究では,大言語モデル(LLM)における動詞-助詞の組み合わせの内部表現について検討する。
我々は'agree on'、'come back'、'give up'といった様々な動詞粒子構築のための各層の表現効果を分析する。
その結果,BERTの中間層は,各動詞カテゴリの表現精度に有意なばらつきがあり,構文構造を効果的に捉えていることがわかった。
論文 参考訳(メタデータ) (2024-12-19T09:21:39Z) - Training Neural Networks as Recognizers of Formal Languages [87.06906286950438]
形式言語理論は、特に認識者に関するものである。
代わりに、非公式な意味でのみ類似したプロキシタスクを使用するのが一般的である。
ニューラルネットワークを文字列のバイナリ分類器として直接訓練し評価することで、このミスマッチを補正する。
論文 参考訳(メタデータ) (2024-11-11T16:33:25Z) - Analysis of Argument Structure Constructions in a Deep Recurrent Language Model [0.0]
本稿では,再帰型ニューラルネットワークモデルにおけるArgument Structure Constructions(ASC)の表現と処理について検討する。
その結果, 文表現は, 全層にまたがる4つのASCに対応する異なるクラスタを形成することがわかった。
これは、脳に拘束された比較的単純なリカレントニューラルネットワークでさえ、様々な構成タイプを効果的に区別できることを示している。
論文 参考訳(メタデータ) (2024-08-06T09:27:41Z) - Explaining Text Similarity in Transformer Models [52.571158418102584]
説明可能なAIの最近の進歩により、トランスフォーマーの説明の改善を活用することで、制限を緩和できるようになった。
両線形類似性モデルにおける2次説明の計算のために開発された拡張であるBiLRPを用いて、NLPモデルにおいてどの特徴相互作用が類似性を促進するかを調べる。
我々の発見は、異なる意味的類似性タスクやモデルに対するより深い理解に寄与し、新しい説明可能なAIメソッドが、どのようにして深い分析とコーパスレベルの洞察を可能にするかを強調した。
論文 参考訳(メタデータ) (2024-05-10T17:11:31Z) - Investigating semantic subspaces of Transformer sentence embeddings
through linear structural probing [2.5002227227256864]
本研究では,文レベル表現の研究手法である意味構造探索を用いた実験を行う。
本手法は,2つのタスクの文脈において,異なる言語モデル(エンコーダのみ,デコーダのみ,エンコーダのみ,エンコーダ-デコーダ)と異なる大きさの言語モデルに適用する。
モデルファミリは、その性能と層動力学において大きく異なるが、結果は大半がモデルサイズの不変量である。
論文 参考訳(メタデータ) (2023-10-18T12:32:07Z) - Agentivit\`a e telicit\`a in GilBERTo: implicazioni cognitive [77.71680953280436]
本研究の目的は,トランスフォーマーに基づくニューラルネットワークモデルが語彙意味論を推論するかどうかを検討することである。
考慮される意味的性質は、テリシティ(定性とも組み合わされる)と作用性である。
論文 参考訳(メタデータ) (2023-07-06T10:52:22Z) - Linear Spaces of Meanings: Compositional Structures in Vision-Language
Models [110.00434385712786]
事前学習された視覚言語モデル(VLM)からのデータ埋め込みにおける構成構造について検討する。
まず,幾何学的観点から構成構造を理解するための枠組みを提案する。
次に、これらの構造がVLM埋め込みの場合の確率論的に持つものを説明し、実際に発生する理由の直観を提供する。
論文 参考訳(メタデータ) (2023-02-28T08:11:56Z) - Lexical semantics enhanced neural word embeddings [4.040491121427623]
階層的適合は、IS-A階層に本質的に格納されている意味的類似性ニュアンスをモデル化するための新しいアプローチである。
その結果、後期核融合における意味的関係を持つ神経埋め込みを専門とする階層化の有効性が示された。
論文 参考訳(メタデータ) (2022-10-03T08:10:23Z) - Low-Dimensional Structure in the Space of Language Representations is
Reflected in Brain Responses [62.197912623223964]
言語モデルと翻訳モデルは,単語の埋め込み,構文的・意味的タスク,将来的な単語埋め込みとの間を円滑に介在する低次元構造を示す。
この表現埋め込みは、各特徴空間が、fMRIを用いて記録された自然言語刺激に対する人間の脳反応にどれだけうまく対応しているかを予測することができる。
これは、埋め込みが脳の自然言語表現構造の一部を捉えていることを示唆している。
論文 参考訳(メタデータ) (2021-06-09T22:59:12Z) - Syntactic Perturbations Reveal Representational Correlates of
Hierarchical Phrase Structure in Pretrained Language Models [22.43510769150502]
文レベルの構文のどの側面がベクターベースの言語表現によってキャプチャされるのかは、完全には分かっていない。
このプロセスでは,トランスフォーマーが文のより大きな部分の層に感性を持たせることが示され,階層的な句構造が重要な役割を果たしている。
論文 参考訳(メタデータ) (2021-04-15T16:30:31Z) - Evaluating Transformer-Based Multilingual Text Classification [55.53547556060537]
我々は,NLPツールが構文的・形態学的に異なる言語で不平等に機能すると主張している。
実験研究を支援するために,単語順と形態的類似度指標を算出した。
論文 参考訳(メタデータ) (2020-04-29T03:34:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。