Humans Coexist, So Must Embodied Artificial Agents
- URL: http://arxiv.org/abs/2502.04809v3
- Date: Mon, 02 Jun 2025 14:32:56 GMT
- Title: Humans Coexist, So Must Embodied Artificial Agents
- Authors: Hannah Kuehn, Joseph La Delfa, Miguel Vasco, Danica Kragic, Iolanda Leite,
- Abstract summary: coexistence is a prerequisite for long-term, in-the-wild interaction with humans.<n>We propose key research directions for the artificial intelligence community to develop coexisting embodied agents.
- Score: 13.570292971478665
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper introduces the concept of coexistence for embodied artificial agents and argues that it is a prerequisite for long-term, in-the-wild interaction with humans. Contemporary embodied artificial agents excel in static, predefined tasks but fall short in dynamic and long-term interactions with humans. On the other hand, humans can adapt and evolve continuously, exploiting the situated knowledge embedded in their environment and other agents, thus contributing to meaningful interactions. We take an interdisciplinary approach at different levels of organization, drawing from biology and design theory, to understand how human and non-human organisms foster entities that coexist within their specific environments. Finally, we propose key research directions for the artificial intelligence community to develop coexisting embodied agents, focusing on the principles, hardware and learning methods responsible for shaping them.
Related papers
- Towards Immersive Human-X Interaction: A Real-Time Framework for Physically Plausible Motion Synthesis [51.95817740348585]
Human-X is a novel framework designed to enable immersive and physically plausible human interactions across diverse entities.<n>Our method jointly predicts actions and reactions in real-time using an auto-regressive reaction diffusion planner.<n>Our framework is validated in real-world applications, including virtual reality interface for human-robot interaction.
arXiv Detail & Related papers (2025-08-04T06:35:48Z) - Embodied AI Agents: Modeling the World [188.85697524284834]
This paper describes our research on AI agents embodied in visual, virtual or physical forms.<n>We propose that the development of world models is central to reasoning and planning of embodied AI agents.<n>We also propose to learn the mental world model of users to enable better human-agent collaboration.
arXiv Detail & Related papers (2025-06-27T16:05:34Z) - AI Agent Behavioral Science [29.262537008412412]
AI Agent Behavioral Science focuses on the systematic observation of behavior, design of interventions to test hypotheses, and theory-guided interpretation of how AI agents act, adapt, and interact over time.<n>We systematize a growing body of research across individual agent, multi-agent, and human-agent interaction settings, and demonstrate how this perspective informs responsible AI by treating fairness, safety, interpretability, accountability, and privacy as behavioral properties.
arXiv Detail & Related papers (2025-06-04T08:12:32Z) - Incentivized Symbiosis: A Paradigm for Human-Agent Coevolution [0.0]
Evolutionary game theory offers a lens to understand the structures and incentives that enable cooperation to be a successful strategy.<n>The convergence of human-agent teaming, contract theory, and decentralized frameworks like Web3 offers a foundation for fostering cooperation.<n>We conceptualize Incentivized Symbiosis as a social contract between humans and AI, inspired by Web3 principles and encoded in blockchain technology.
arXiv Detail & Related papers (2024-12-08T20:23:48Z) - Artificial Human Intelligence: The role of Humans in the Development of Next Generation AI [6.8894258727040665]
We explore the interplay between human and machine intelligence, focusing on the crucial role humans play in developing intelligent systems.<n>We propose future perspectives, capitalizing on the advantages of symbiotic designs to suggest a human-centered direction for next-generation developments.
arXiv Detail & Related papers (2024-09-24T12:02:20Z) - Interactive embodied evolution for socially adept Artificial General Creatures [0.0]
We propose a research line aimed at incrementally building both the technology and the trustworthiness of AGC.
We advocate starting from unobtrusive, nonthreatening artificial agents that would explicitly collaborate with humans.
Although they would not be able to play competitive online games or generate poems, we argue that creatures akin to artificial pets would be invaluable stepping stones toward symbiotic Artificial General Intelligence.
arXiv Detail & Related papers (2024-07-31T06:01:17Z) - On the Emergence of Symmetrical Reality [51.21203247240322]
We introduce the symmetrical reality framework, which offers a unified representation encompassing various forms of physical-virtual amalgamations.
We propose an instance of an AI-driven active assistance service that illustrates the potential applications of symmetrical reality.
arXiv Detail & Related papers (2024-01-26T16:09:39Z) - Agent AI: Surveying the Horizons of Multimodal Interaction [83.18367129924997]
"Agent AI" is a class of interactive systems that can perceive visual stimuli, language inputs, and other environmentally-grounded data.
We envision a future where people can easily create any virtual reality or simulated scene and interact with agents embodied within the virtual environment.
arXiv Detail & Related papers (2024-01-07T19:11:18Z) - Habitat 3.0: A Co-Habitat for Humans, Avatars and Robots [119.55240471433302]
Habitat 3.0 is a simulation platform for studying collaborative human-robot tasks in home environments.
It addresses challenges in modeling complex deformable bodies and diversity in appearance and motion.
Human-in-the-loop infrastructure enables real human interaction with simulated robots via mouse/keyboard or a VR interface.
arXiv Detail & Related papers (2023-10-19T17:29:17Z) - World Models and Predictive Coding for Cognitive and Developmental
Robotics: Frontiers and Challenges [51.92834011423463]
We focus on the two concepts of world models and predictive coding.
In neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment.
arXiv Detail & Related papers (2023-01-14T06:38:14Z) - On some Foundational Aspects of Human-Centered Artificial Intelligence [52.03866242565846]
There is no clear definition of what is meant by Human Centered Artificial Intelligence.
This paper introduces the term HCAI agent to refer to any physical or software computational agent equipped with AI components.
We see the notion of HCAI agent, together with its components and functions, as a way to bridge the technical and non-technical discussions on human-centered AI.
arXiv Detail & Related papers (2021-12-29T09:58:59Z) - Creating Multimodal Interactive Agents with Imitation and
Self-Supervised Learning [20.02604302565522]
A common vision from science fiction is that robots will one day inhabit our physical spaces, sense the world as we do, assist our physical labours, and communicate with us through natural language.
Here we study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
We show that imitation learning of human-human interactions in a simulated world, in conjunction with self-supervised learning, is sufficient to produce a multimodal interactive agent, which we call MIA, that successfully interacts with non-adversarial humans 75% of the time.
arXiv Detail & Related papers (2021-12-07T15:17:27Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
Intuitive psychology is the ability to reason about hidden mental variables that drive observable actions.
Despite recent interest in machine agents that reason about other agents, it is not clear if such agents learn or hold the core psychology principles that drive human reasoning.
We present a benchmark consisting of procedurally generated 3D animations, AGENT, structured around four scenarios.
arXiv Detail & Related papers (2021-02-24T14:58:23Z) - Imitating Interactive Intelligence [24.95842455898523]
We study how to design artificial agents that can interact naturally with humans using the simplification of a virtual environment.
To build agents that can robustly interact with humans, we would ideally train them while they interact with humans.
We use ideas from inverse reinforcement learning to reduce the disparities between human-human and agent-agent interactive behaviour.
arXiv Detail & Related papers (2020-12-10T13:55:47Z) - Joint Mind Modeling for Explanation Generation in Complex Human-Robot
Collaborative Tasks [83.37025218216888]
We propose a novel explainable AI (XAI) framework for achieving human-like communication in human-robot collaborations.
The robot builds a hierarchical mind model of the human user and generates explanations of its own mind as a form of communications.
Results show that the generated explanations of our approach significantly improves the collaboration performance and user perception of the robot.
arXiv Detail & Related papers (2020-07-24T23:35:03Z) - Machine Common Sense [77.34726150561087]
Machine common sense remains a broad, potentially unbounded problem in artificial intelligence (AI)
This article deals with the aspects of modeling commonsense reasoning focusing on such domain as interpersonal interactions.
arXiv Detail & Related papers (2020-06-15T13:59:47Z) - Social Navigation with Human Empowerment driven Deep Reinforcement
Learning [20.815007485176615]
The next generation of mobile robots needs to be socially-compliant to be accepted by their human collaborators.
In this paper, we go beyond the approach of classical acfRL and provide our agent with intrinsic motivation using empowerment.
Our approach has a positive influence on humans, as it minimizes its distance to humans and thus decreases human travel time while moving efficiently towards its own goal.
arXiv Detail & Related papers (2020-03-18T11:16:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.