論文の概要: HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
- arxiv url: http://arxiv.org/abs/2502.04847v2
- Date: Mon, 10 Feb 2025 14:51:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:24.108985
- Title: HumanDiT: Pose-Guided Diffusion Transformer for Long-form Human Motion Video Generation
- Title(参考訳): HumanDiT:長めの人間のモーションビデオ生成のためのPose-Guided Diffusion Transformer
- Authors: Qijun Gan, Yi Ren, Chen Zhang, Zhenhui Ye, Pan Xie, Xiang Yin, Zehuan Yuan, Bingyue Peng, Jianke Zhu,
- Abstract要約: 提案するHumanDiTは,14,000時間の高品質ビデオを含むデータセットに基づいてトレーニングされたポーズ誘導拡散変換器(DiT)ベースのフレームワークである。
HumanDiTは多数のビデオ解像度と可変シーケンス長をサポートし、長いシーケンスのビデオ生成の学習を容易にする。
実験では、様々なシナリオにまたがる長めの、ポーズの正確なビデオを生成する上で、優れたパフォーマンスを示す。
- 参考スコア(独自算出の注目度): 39.69554411714128
- License:
- Abstract: Human motion video generation has advanced significantly, while existing methods still struggle with accurately rendering detailed body parts like hands and faces, especially in long sequences and intricate motions. Current approaches also rely on fixed resolution and struggle to maintain visual consistency. To address these limitations, we propose HumanDiT, a pose-guided Diffusion Transformer (DiT)-based framework trained on a large and wild dataset containing 14,000 hours of high-quality video to produce high-fidelity videos with fine-grained body rendering. Specifically, (i) HumanDiT, built on DiT, supports numerous video resolutions and variable sequence lengths, facilitating learning for long-sequence video generation; (ii) we introduce a prefix-latent reference strategy to maintain personalized characteristics across extended sequences. Furthermore, during inference, HumanDiT leverages Keypoint-DiT to generate subsequent pose sequences, facilitating video continuation from static images or existing videos. It also utilizes a Pose Adapter to enable pose transfer with given sequences. Extensive experiments demonstrate its superior performance in generating long-form, pose-accurate videos across diverse scenarios.
- Abstract(参考訳): 人間のモーションビデオ生成は大幅に進歩しているが、既存の手法では手や顔などの細かな部分、特に長いシーケンスや複雑な動きの正確なレンダリングに苦戦している。
現在のアプローチでは、解像度の固定化や、視覚的な一貫性維持に苦労している。
このような制約に対処するために,14,000時間の高品質なビデオを含む大規模で荒々しいデータセットに基づいてトレーニングされた,ポーズ誘導拡散変換(DiT)ベースのフレームワークであるHumanDiTを提案する。
具体的には
i) DiT上に構築されたHumanDiTは、多数のビデオ解像度と可変シーケンス長をサポートし、長時間のビデオ生成のための学習を容易にする。
(II) 拡張シーケンス間でパーソナライズされた特徴を維持するためのプレフィックスラテント参照戦略を導入する。
さらに、推論中に、HumanDiTはKeypoint-DiTを活用して後続のポーズシーケンスを生成し、静的画像や既存のビデオからのビデオ継続を容易にする。
また、Pose Adapterを使用して、与えられたシーケンスでポーズ転送を可能にする。
大規模な実験では、様々なシナリオにまたがる長めの、ポーズの正確なビデオを生成する上で、優れたパフォーマンスを示している。
関連論文リスト
- FreeLong: Training-Free Long Video Generation with SpectralBlend Temporal Attention [57.651429116402554]
本稿では、一貫した長ビデオ生成のための既存の短ビデオ拡散モデルを拡張するための、単純で訓練のないアプローチについて検討する。
短いビデオ拡散モデルを直接適用することで、ビデオの品質が著しく低下することを発見した。
そこで本研究では,長い映像の特徴の周波数分布のバランスをとるために,FreeLongという新しい手法を提案する。
論文 参考訳(メタデータ) (2024-07-29T11:52:07Z) - Anchored Diffusion for Video Face Reenactment [17.343307538702238]
比較的長くシームレスなビデオを合成するための新しい手法であるAnchored Diffusionを紹介する。
我々は、ランダムな非一様時間間隔でビデオシーケンスでモデルを訓練し、外部ガイダンスを介して時間情報を組み込む。
推論の際には、トランスフォーマーアーキテクチャを利用して拡散プロセスを修正し、共通のフレームに固定された一様でないシーケンスのバッチを生成する。
論文 参考訳(メタデータ) (2024-07-21T13:14:17Z) - WildVidFit: Video Virtual Try-On in the Wild via Image-Based Controlled Diffusion Models [132.77237314239025]
ビデオ仮想トライオンは、衣料品のアイデンティティを維持し、ソースビデオにおける人のポーズと身体の形に適応する現実的なシーケンスを生成することを目的としている。
従来の画像ベースの手法は、ワープとブレンディングに依存しており、複雑な人間の動きや閉塞に苦しむ。
衣料品の説明や人間の動きを条件とした映像生成のプロセスとして,映像試行を再認識する。
私たちのソリューションであるWildVidFitは、画像ベースで制御された拡散モデルを用いて、一段階の合理化を図っている。
論文 参考訳(メタデータ) (2024-07-15T11:21:03Z) - MultiPly: Reconstruction of Multiple People from Monocular Video in the Wild [32.6521941706907]
モノクラーインザワイルドビデオから3Dで複数の人物を再構成する新しいフレームワークであるMultiPlyを提案する。
まず、シーン全体の階層化されたニューラル表現を定義し、個々の人間と背景モデルで合成する。
階層化可能なボリュームレンダリングを通じて,ビデオから階層化ニューラル表現を学習する。
論文 参考訳(メタデータ) (2024-06-03T17:59:57Z) - EasyAnimate: A High-Performance Long Video Generation Method based on Transformer Architecture [11.587428534308945]
EasyAnimateは、高性能な結果を得るためにトランスフォーマーアーキテクチャのパワーを利用する、ビデオ生成の先進的な方法である。
動作モジュールブロックを組み込んで,3次元映像生成の複雑さに対応するために,当初2次元画像合成用に設計されたDiTフレームワークを拡張した。
我々は、データ前処理、VAEトレーニング、DiTモデルトレーニング、エンドツーエンドのビデオ推論といった側面を含む、DiTに基づくビデオ制作のための総合的なエコシステムを提供する。
論文 参考訳(メタデータ) (2024-05-29T11:11:07Z) - VITON-DiT: Learning In-the-Wild Video Try-On from Human Dance Videos via Diffusion Transformers [53.45587477621942]
そこで本研究では,VITON-DiT という,Diton-DiT ベースのビデオトライオンフレームワークを提案する。
具体的には、VITON-DiTは、衣服抽出器、空間-テンポラル denoising DiT、アイデンティティ保存制御ネットから構成される。
また、トレーニング中のランダム選択戦略や、長いビデオ生成を容易にするために、推論時に補間自己回帰(IAR)技術を導入する。
論文 参考訳(メタデータ) (2024-05-28T16:21:03Z) - VividPose: Advancing Stable Video Diffusion for Realistic Human Image Animation [79.99551055245071]
時間的安定性を向上するエンドツーエンドパイプラインであるVividPoseを提案する。
識別対応外見制御器は、他の外見の詳細を損なうことなく、追加の顔情報を統合する。
SMPL-Xからの高密度レンダリングマップとスパーススケルトンマップの両方を利用する幾何対応のポーズコントローラ。
VividPoseは、提案したWildデータセットに優れた一般化能力を示す。
論文 参考訳(メタデータ) (2024-05-28T13:18:32Z) - MAVIN: Multi-Action Video Generation with Diffusion Models via Transition Video Infilling [19.004339956475498]
MAVINは、2つの動画をシームレスに接続し、結合的な統合シーケンスを形成するトランジションビデオを生成するように設計されている。
従来の品質基準を補完し,時間的コヒーレンスと滑らかさを評価するための新しい指標CLIP-RS(CLIP Relative Smoothness)を導入する。
馬とトラのシナリオに関する実験結果は、滑らかでコヒーレントなビデオ遷移を生成するMAVINの優れた性能を示す。
論文 参考訳(メタデータ) (2024-05-28T09:46:09Z) - Generating Long Videos of Dynamic Scenes [66.56925105992472]
本稿では、物体の動きを再現する映像生成モデル、カメラ視点の変化、時間とともに現れる新しいコンテンツについて述べる。
よくある障害ケースは、コンテンツが時間的一貫性を提供する誘導バイアスに過度に依存するため、決して変化しないことです。
論文 参考訳(メタデータ) (2022-06-07T16:29:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。