論文の概要: Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
- arxiv url: http://arxiv.org/abs/2502.04864v2
- Date: Wed, 29 Oct 2025 10:11:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-10-30 15:50:42.885799
- Title: Redistributing Rewards Across Time and Agents for Multi-Agent Reinforcement Learning
- Title(参考訳): マルチエージェント強化学習のための時間とエージェント間の報酬の再分配
- Authors: Aditya Kapoor, Kale-ab Tessera, Mayank Baranwal, Harshad Khadilkar, Jan Peters, Stefano Albrecht, Mingfei Sun,
- Abstract要約: 共用型マルチエージェント強化学習において、各エージェントの共用報酬への貢献を阻害する信用割り当ては重要な課題である。
本稿では、この制約から信用モデリングを分離するアプローチであるTAR(Temporal-Agent Reward Redistribution)を導入する。
本手法は,モデル精度によらず最適ポリシーが維持されることを保証するPBRSと等価であることを示す。
- 参考スコア(独自算出の注目度): 14.852334980733369
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Credit assignmen, disentangling each agent's contribution to a shared reward, is a critical challenge in cooperative multi-agent reinforcement learning (MARL). To be effective, credit assignment methods must preserve the environment's optimal policy. Some recent approaches attempt this by enforcing return equivalence, where the sum of distributed rewards must equal the team reward. However, their guarantees are conditional on a learned model's regression accuracy, making them unreliable in practice. We introduce Temporal-Agent Reward Redistribution (TAR$^2$), an approach that decouples credit modeling from this constraint. A neural network learns unnormalized contribution scores, while a separate, deterministic normalization step enforces return equivalence by construction. We demonstrate that this method is equivalent to a valid Potential-Based Reward Shaping (PBRS), which guarantees the optimal policy is preserved regardless of model accuracy. Empirically, on challenging SMACLite and Google Research Football (GRF) benchmarks, TAR$^2$ accelerates learning and achieves higher final performance than strong baselines. These results establish our method as an effective solution for the agent-temporal credit assignment problem.
- Abstract(参考訳): 共用型マルチエージェント強化学習(MARL)において、各エージェントの共用報酬への貢献を阻害するクレジットアサインメン(Credit assignmen)が重要な課題である。
効果的にするためには、信用割当手法は環境の最適政策を維持する必要がある。
いくつかの最近のアプローチでは、分散報酬の合計がチームの報酬と同等でなければならないリターン等価性(return equivalence)を強制することでこれを試みている。
しかし、それらの保証は学習モデルの回帰精度に条件づけられており、実際は信頼できない。
本稿では、この制約から信用モデリングを分離するアプローチであるTAR$^2$(Tar-Agent Reward Redistribution)を導入する。
ニューラルネットワークは正規化されていないコントリビューションスコアを学習し、分離された決定論的正規化ステップは、構築による戻り等価性を強制する。
本手法は,モデル精度によらず最適ポリシーが維持されることを保証するPBRSと等価であることを示す。
実証的には、SMACLiteとGoogle Research Football (GRF)ベンチマークに挑戦する上で、TAR$^2$は学習を加速し、強力なベースラインよりも高い最終的なパフォーマンスを達成する。
これらの結果から,エージェント・テンポラル・クレジット代入問題に対する有効な解法として,本手法を確立した。
関連論文リスト
- Accelerating RL for LLM Reasoning with Optimal Advantage Regression [52.0792918455501]
本稿では,最適優位関数を直接近似する新しい2段階ポリシー最適化フレームワークを提案する。
A$*-POは、幅広い数学的推論ベンチマークで競合性能を達成する。
PPO、GRPO、REBELと比較して、トレーニング時間を最大2$times$、ピークメモリ使用率を30%以上削減する。
論文 参考訳(メタデータ) (2025-05-27T03:58:50Z) - Runaway is Ashamed, But Helpful: On the Early-Exit Behavior of Large Language Model-based Agents in Embodied Environments [55.044159987218436]
大規模言語モデル(LLM)は、複雑な実施環境において、強力な計画と意思決定能力を示す。
LLMをベースとしたエージェントの早期退避行動を探究する第一歩を踏み出す。
論文 参考訳(メタデータ) (2025-05-23T08:23:36Z) - Enhancing Diversity in Parallel Agents: A Maximum State Entropy Exploration Story [40.82741665804367]
並列環境で収集したデータのエントロピーを最大化する新しい学習フレームワークを提案する。
提案手法は,個々のエージェントとエージェント間の多様性のエントロピーを慎重にバランスさせ,冗長性を効果的に最小化する。
論文 参考訳(メタデータ) (2025-05-02T15:08:17Z) - Agent-Temporal Credit Assignment for Optimal Policy Preservation in Sparse Multi-Agent Reinforcement Learning [14.003793644193605]
マルチエージェント環境では、エージェントはスパースや遅れたグローバル報酬のために最適なポリシーを学ぶのに苦労することが多い。
本稿では,エージェント・テンポラル・アジェント・リワード再分配(TAR$2$)を導入し,エージェント・テンポラル・クレジット割り当て問題に対処する新しいアプローチを提案する。
TAR$2$は、粗末なグローバル報酬をタイムステップ固有の報酬に分解し、エージェント固有の報酬を計算します。
論文 参考訳(メタデータ) (2024-12-19T12:05:13Z) - VinePPO: Unlocking RL Potential For LLM Reasoning Through Refined Credit Assignment [66.80143024475635]
VinePPOは不偏のモンテカルロ推定を計算するための簡単な手法である。
我々は、VinePPOが、MATHおよびGSM8Kデータセット間でPPOや他のRLフリーベースラインを一貫して上回ることを示す。
論文 参考訳(メタデータ) (2024-10-02T15:49:30Z) - Towards Fast Rates for Federated and Multi-Task Reinforcement Learning [34.34798425737858]
我々は、慎重に設計されたバイアス補正機構を備えた新しいフェデレーションポリシーアルゴリズムであるFast-FedPGを提案する。
勾配支配条件下では,本アルゴリズムは (i) 厳密な勾配で高速な線形収束を保証し, (ii) 雑音に富んだ政策勾配を持つエージェントの数に比例して線形スピードアップを楽しむサブ線形速度を保証している。
論文 参考訳(メタデータ) (2024-09-09T02:59:17Z) - Towards Global Optimality for Practical Average Reward Reinforcement Learning without Mixing Time Oracles [83.85151306138007]
Multi-level Actor-Critic (MAC) フレームワークには、MLMC (Multi-level Monte-Carlo) 推定器が組み込まれている。
MACは、平均報酬設定において、既存の最先端ポリシーグラデーションベースの手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-03-18T16:23:47Z) - Handling Cost and Constraints with Off-Policy Deep Reinforcement
Learning [2.793095554369282]
政治外学習の最も一般的な方法は、学習された状態アクション(Q$)値関数が選択されたデータのバッチに対して最大化されるポリシー改善ステップである。
我々は、この戦略を「混合符号」報酬関数を持つ環境で再考する。
この2つ目のアプローチは、混合符号の報酬を持つ連続的な行動空間に適用した場合、リセットによって拡張された最先端の手法よりも一貫して、著しく優れる。
論文 参考訳(メタデータ) (2023-11-30T16:31:04Z) - STAS: Spatial-Temporal Return Decomposition for Multi-agent
Reinforcement Learning [10.102447181869005]
本研究では,時間次元と空間次元の両方でクレジット代入を学習する新しい手法を提案する。
提案手法は, 時間的信用を効果的に割り当て, 最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-04-15T10:09:03Z) - Learning From Good Trajectories in Offline Multi-Agent Reinforcement
Learning [98.07495732562654]
オフラインマルチエージェント強化学習(MARL)は、事前コンパイルされたデータセットから効果的なマルチエージェントポリシーを学ぶことを目的としている。
オフラインのMARLが学んだエージェントは、しばしばこのランダムなポリシーを継承し、チーム全体のパフォーマンスを脅かす。
この問題に対処するために,共有個人軌道(SIT)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-11-28T18:11:26Z) - Distributional Reward Estimation for Effective Multi-Agent Deep
Reinforcement Learning [19.788336796981685]
実効的マルチエージェント強化学習(DRE-MARL)のための分散逆推定フレームワークを提案する。
本研究の目的は,安定トレーニングのための多行動分岐報酬推定と政策重み付け報酬アグリゲーションを設計することである。
DRE-MARLの優位性は,有効性とロバスト性の両方の観点から,SOTAベースラインと比較して,ベンチマークマルチエージェントシナリオを用いて実証される。
論文 参考訳(メタデータ) (2022-10-14T08:31:45Z) - Reinforcement Learning in Reward-Mixing MDPs [74.41782017817808]
報酬混合マルコフ決定過程(MDP)におけるエピソード強化学習
cdot S2 A2)$ episodes, where$H$ is time-horizon and $S, A$ are the number of state and actions。
epsilon$-optimal policy after $tildeO(poly(H,epsilon-1) cdot S2 A2)$ episodes, $H$ is time-horizon and $S, A$ are the number of state and actions。
論文 参考訳(メタデータ) (2021-10-07T18:55:49Z) - ERMAS: Becoming Robust to Reward Function Sim-to-Real Gaps in
Multi-Agent Simulations [110.72725220033983]
Epsilon-Robust Multi-Agent Simulation (ERMAS)は、このようなマルチエージェントのsim-to-realギャップに対して堅牢なAIポリシーを学ぶためのフレームワークである。
ERMASは、エージェントリスク回避の変化に対して堅牢な税政策を学び、複雑な時間シミュレーションで最大15%社会福祉を改善する。
特に、ERMASは、エージェントリスク回避の変化に対して堅牢な税制政策を学び、複雑な時間シミュレーションにおいて、社会福祉を最大15%改善する。
論文 参考訳(メタデータ) (2021-06-10T04:32:20Z) - DDPG++: Striving for Simplicity in Continuous-control Off-Policy
Reinforcement Learning [95.60782037764928]
過大評価バイアスが制御される限り、単純な決定論的政策勾配は著しく機能することを示す。
第二に、非政治的なアルゴリズムの典型であるトレーニングの不安定性を、欲張りのポリシー更新ステップに向ける。
第3に、確率推定文学におけるアイデアは、リプレイバッファからの重要サンプル遷移や、性能劣化を防ぐためのポリシー更新に利用できることを示す。
論文 参考訳(メタデータ) (2020-06-26T20:21:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。