論文の概要: On the Power of Heuristics in Temporal Graphs
- arxiv url: http://arxiv.org/abs/2502.04910v1
- Date: Fri, 07 Feb 2025 13:28:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:56:04.242269
- Title: On the Power of Heuristics in Temporal Graphs
- Title(参考訳): 時間グラフにおけるヒューリスティックスの力について
- Authors: Filip Cornell, Oleg Smirnov, Gabriela Zarzar Gandler, Lele Cao,
- Abstract要約: データセット間の信頼度と人気度の影響を定量化するメトリクスを導入します。
その結果、公正な比較を可能にし、より堅牢な時間グラフモデルの開発を促進するための洗練された評価手法の重要性を強調した。
- 参考スコア(独自算出の注目度): 2.5957835343537266
- License:
- Abstract: Dynamic graph datasets often exhibit strong temporal patterns, such as recency, which prioritizes recent interactions, and popularity, which favors frequently occurring nodes. We demonstrate that simple heuristics leveraging only these patterns can perform on par or outperform state-of-the-art neural network models under standard evaluation protocols. To further explore these dynamics, we introduce metrics that quantify the impact of recency and popularity across datasets. Our experiments on BenchTemp and the Temporal Graph Benchmark show that our approaches achieve state-of-the-art performance across all datasets in the latter and secure top ranks on multiple datasets in the former. These results emphasize the importance of refined evaluation schemes to enable fair comparisons and promote the development of more robust temporal graph models. Additionally, they reveal that current deep learning methods often struggle to capture the key patterns underlying predictions in real-world temporal graphs. For reproducibility, we have made our code publicly available.
- Abstract(参考訳): 動的グラフデータセットは、最近の相互作用を優先する傾向や、頻繁に発生するノードを好む人気など、強い時間パターンを示すことが多い。
これらのパターンのみを活用する単純なヒューリスティックスは、標準的な評価プロトコルの下で、最先端のニューラルネットワークモデルに匹敵する性能を発揮することを実証する。
これらのダイナミクスをさらに探求するために、データセット間の信頼度と人気度の影響を定量化するメトリクスを導入します。
BenchTempとTemporal Graph Benchmarkに関する我々の実験は、我々のアプローチが、後者のすべてのデータセットで最先端のパフォーマンスを実現し、前者の複数のデータセットでトップランクを確保していることを示している。
これらの結果は、公正な比較を可能にし、より堅牢な時間グラフモデルの開発を促進するための洗練された評価スキームの重要性を強調している。
さらに、現在のディープラーニング手法は、現実世界の時間グラフにおける予測の根底にある重要なパターンを捉えるのにしばしば苦労している。
再現性のため、コードを公開しました。
関連論文リスト
- TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphsは階層的時間グラフとして動的相互作用を特徴付ける新しいアプローチである。
提案手法は,コンパクトなグラフベース表現を用いて相互作用をモデル化し,多種多様な時間スケールでの適応推論を可能にする。
我々は,サッカーシミュレータ,抵抗ゲーム,MOMA人間活動データセットなど,複雑でダイナミックなエージェントインタラクションを持つ複数のデータセット上でTimeGraphsを評価する。
論文 参考訳(メタデータ) (2024-01-06T06:26:49Z) - Temporal graph models fail to capture global temporal dynamics [0.43512163406552007]
我々は「最近普及しているノード」の自明な最適化のないベースラインを提案する。
本研究では, 時間変動が強いデータセットに対して, 標準負サンプリング評価が不適当であることを示す。
この結果から,時間グラフネットワークアーキテクチャは,重要なグローバルダイナミクスを持つ問題における使用法を深く再考する必要があることが示唆された。
論文 参考訳(メタデータ) (2023-09-27T15:36:45Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
本稿では,レイテンシが低く,最先端の高レイテンシモデルと競合する連続時間動的グラフ(CTDG)のフレームワークを提案する。
本フレームワークでは,マルチホップ情報を要約したタイムアウェアノード埋め込みを,入ってくるエッジ上のシングルホップ操作のみを用いて計算する。
グラフプリント機能と機械学習を組み合わせることで,競争性能が向上することを示す。
論文 参考訳(メタデータ) (2023-07-17T12:25:52Z) - Temporal Graph Benchmark for Machine Learning on Temporal Graphs [54.52243310226456]
テンポラルグラフベンチマーク(TGB)は、困難で多様なベンチマークデータセットのコレクションである。
各データセットをベンチマークし、共通のモデルのパフォーマンスがデータセット間で大きく異なることを発見した。
TGBは、再現可能でアクセス可能な時間グラフ研究のための自動機械学習パイプラインを提供する。
論文 参考訳(メタデータ) (2023-07-03T13:58:20Z) - Deep graph kernel point processes [17.74234892097879]
本稿では,グラフ上の離散的なイベントデータに対する新たなポイントプロセスモデルを提案する。
キーとなるアイデアは、グラフニューラルネットワーク(GNN)による影響カーネルを表現して、基盤となるグラフ構造をキャプチャすることだ。
ニューラルネットワークを用いた条件強度関数を直接モデル化することに焦点を当てた以前の研究と比較して、カーネルのプレゼンテーションでは、繰り返し発生する事象の影響パターンをより効果的に表現している。
論文 参考訳(メタデータ) (2023-06-20T06:15:19Z) - EasyDGL: Encode, Train and Interpret for Continuous-time Dynamic Graph Learning [92.71579608528907]
本稿では,3つのモジュールから構成される使い勝手の良いパイプライン(EasyDGL)を設計することを目的とする。
EasyDGLは、進化するグラフデータからモデルが学習する周波数コンテンツの予測力を効果的に定量化することができる。
論文 参考訳(メタデータ) (2023-03-22T06:35:08Z) - Taming Local Effects in Graph-based Spatiotemporal Forecasting [28.30604130617646]
時相グラフニューラルネットワークは時系列予測に有効であることが示されている。
本稿では,グラフに基づく時間的予測におけるグローバル性と局所性の間の相互作用を理解することを目的とする。
このようなアーキテクチャにトレーニング可能なノード埋め込みを組み込むことを合理化するための方法論的枠組みを提案する。
論文 参考訳(メタデータ) (2023-02-08T14:18:56Z) - A Graph-Enhanced Click Model for Web Search [67.27218481132185]
ウェブ検索のための新しいグラフ強調クリックモデル(GraphCM)を提案する。
セッション内情報とセッション間情報の両方を、スパーシリティ問題とコールドスタート問題に活用する。
論文 参考訳(メタデータ) (2022-06-17T08:32:43Z) - Multivariate Time Series Forecasting with Dynamic Graph Neural ODEs [65.18780403244178]
動的グラフニューラル正規微分方程式(MTGODE)を用いた多変量時系列予測連続モデルを提案する。
具体的には、まず、時間進化するノードの特徴と未知のグラフ構造を持つ動的グラフに多変量時系列を抽象化する。
そして、欠落したグラフトポロジを補完し、空間的および時間的メッセージパッシングを統一するために、ニューラルODEを設計、解決する。
論文 参考訳(メタデータ) (2022-02-17T02:17:31Z) - Catastrophic Forgetting in Deep Graph Networks: an Introductory
Benchmark for Graph Classification [12.423303337249795]
グラフ表現学習シナリオにおける破滅的忘れ現象について検討する。
リプレイはこれまでのところ最も効果的な戦略であり、正規化の使用も最もメリットがあります。
論文 参考訳(メタデータ) (2021-03-22T12:07:21Z) - From Static to Dynamic Node Embeddings [61.58641072424504]
本稿では,時間的予測に基づくアプリケーションにグラフストリームデータを活用するための汎用フレームワークを提案する。
提案フレームワークは,適切なグラフ時系列表現を学習するための新しい手法を含む。
トップ3の時間モデルは常に新しい$epsilon$-graphの時系列表現を利用するモデルであることが分かりました。
論文 参考訳(メタデータ) (2020-09-21T16:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。