Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference? A Systematic Evaluation
- URL: http://arxiv.org/abs/2502.04949v1
- Date: Fri, 07 Feb 2025 14:13:51 GMT
- Title: Does Unsupervised Domain Adaptation Improve the Robustness of Amortized Bayesian Inference? A Systematic Evaluation
- Authors: Lasse Elsemüller, Valentin Pratz, Mischa von Krause, Andreas Voss, Paul-Christian Bürkner, Stefan T. Radev,
- Abstract summary: Recent robust approaches employ unsupervised domain adaptation (UDA) to match the embedding spaces of simulated and observed data.
We demonstrate that aligning summary spaces between domains effectively mitigates the impact of unmodeled phenomena or noise.
Our results underscore the need for careful consideration of misspecification types when using UDA techniques to increase the robustness of ABI in practice.
- Score: 3.4109073456116477
- License:
- Abstract: Neural networks are fragile when confronted with data that significantly deviates from their training distribution. This is true in particular for simulation-based inference methods, such as neural amortized Bayesian inference (ABI), where models trained on simulated data are deployed on noisy real-world observations. Recent robust approaches employ unsupervised domain adaptation (UDA) to match the embedding spaces of simulated and observed data. However, the lack of comprehensive evaluations across different domain mismatches raises concerns about the reliability in high-stakes applications. We address this gap by systematically testing UDA approaches across a wide range of misspecification scenarios in both a controlled and a high-dimensional benchmark. We demonstrate that aligning summary spaces between domains effectively mitigates the impact of unmodeled phenomena or noise. However, the same alignment mechanism can lead to failures under prior misspecifications - a critical finding with practical consequences. Our results underscore the need for careful consideration of misspecification types when using UDA techniques to increase the robustness of ABI in practice.
Related papers
- Deep evolving semi-supervised anomaly detection [14.027613461156864]
The aim of this paper is to formalise the task of continual semi-supervised anomaly detection (CSAD)
The paper introduces a baseline model of a variational autoencoder (VAE) to work with semi-supervised data along with a continual learning method of deep generative replay with outlier rejection.
arXiv Detail & Related papers (2024-12-01T15:48:37Z) - Testing Generalizability in Causal Inference [3.547529079746247]
There is no formal procedure for statistically evaluating generalizability in machine learning algorithms.
We propose a systematic and quantitative framework for evaluating model generalizability in causal inference settings.
By basing simulations on real data, our method ensures more realistic evaluations, which is often missing in current work.
arXiv Detail & Related papers (2024-11-05T11:44:00Z) - Cross-Domain Learning for Video Anomaly Detection with Limited Supervision [12.290352736331602]
Video Anomaly Detection (VAD) automates the identification of unusual events, such as security threats in surveillance videos.
Existing cross-domain VAD methods focus on unsupervised learning, resulting in performance that falls short of real-world expectations.
We introduce a novel weakly-supervised framework for Cross-Domain Learning (CDL) in VAD that incorporates external data during training by estimating its prediction bias and adaptively minimizing that using the predicted uncertainty.
arXiv Detail & Related papers (2024-08-09T17:28:29Z) - Boosted Control Functions: Distribution generalization and invariance in confounded models [10.503777692702952]
We introduce a strong notion of invariance that allows for distribution generalization even in the presence of nonlinear, non-identifiable structural functions.
We propose the ControlTwicing algorithm to estimate the Boosted Control Function (BCF) using flexible machine-learning techniques.
arXiv Detail & Related papers (2023-10-09T15:43:46Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - On the Practicality of Deterministic Epistemic Uncertainty [106.06571981780591]
deterministic uncertainty methods (DUMs) achieve strong performance on detecting out-of-distribution data.
It remains unclear whether DUMs are well calibrated and can seamlessly scale to real-world applications.
arXiv Detail & Related papers (2021-07-01T17:59:07Z) - Exploring Robustness of Unsupervised Domain Adaptation in Semantic
Segmentation [74.05906222376608]
We propose adversarial self-supervision UDA (or ASSUDA) that maximizes the agreement between clean images and their adversarial examples by a contrastive loss in the output space.
This paper is rooted in two observations: (i) the robustness of UDA methods in semantic segmentation remains unexplored, which pose a security concern in this field; and (ii) although commonly used self-supervision (e.g., rotation and jigsaw) benefits image tasks such as classification and recognition, they fail to provide the critical supervision signals that could learn discriminative representation for segmentation tasks.
arXiv Detail & Related papers (2021-05-23T01:50:44Z) - Attribute-Guided Adversarial Training for Robustness to Natural
Perturbations [64.35805267250682]
We propose an adversarial training approach which learns to generate new samples so as to maximize exposure of the classifier to the attributes-space.
Our approach enables deep neural networks to be robust against a wide range of naturally occurring perturbations.
arXiv Detail & Related papers (2020-12-03T10:17:30Z) - Robustified Domain Adaptation [13.14535125302501]
Unsupervised domain adaptation (UDA) is widely used to transfer knowledge from a labeled source domain to an unlabeled target domain.
The inevitable domain distribution deviation in UDA is a critical barrier to model robustness on the target domain.
We propose a novel Class-consistent Unsupervised Domain Adaptation (CURDA) framework for training robust UDA models.
arXiv Detail & Related papers (2020-11-18T22:21:54Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.