論文の概要: Towards Smarter Sensing: 2D Clutter Mitigation in RL-Driven Cognitive MIMO Radar
- arxiv url: http://arxiv.org/abs/2502.04967v1
- Date: Fri, 07 Feb 2025 14:31:58 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:26.353933
- Title: Towards Smarter Sensing: 2D Clutter Mitigation in RL-Driven Cognitive MIMO Radar
- Title(参考訳): スマートセンシングに向けて:RL駆動型認知MIMOレーダにおける2次元クラッタ緩和
- Authors: Adam Umra, Aya Mostafa Ahmed, Aydin Sezgin,
- Abstract要約: このシステムは平面配列構成を採用し、伝送波形とビームフォーミングパターンを適用して検出性能を最適化する。
堅牢なウォルド型検出器はSARSAベースのRLアルゴリズムと統合されており、レーダーは複雑な乱雑な環境を学習し適応することができる。
- 参考スコア(独自算出の注目度): 8.674241138986925
- License:
- Abstract: Motivated by the growing interest in integrated sensing and communication for 6th generation (6G) networks, this paper presents a cognitive Multiple-Input Multiple-Output (MIMO) radar system enhanced by reinforcement learning (RL) for robust multitarget detection in dynamic environments. The system employs a planar array configuration and adapts its transmitted waveforms and beamforming patterns to optimize detection performance in the presence of unknown two-dimensional (2D) disturbances. A robust Wald-type detector is integrated with a SARSA-based RL algorithm, enabling the radar to learn and adapt to complex clutter environments modeled by a 2D autoregressive process. Simulation results demonstrate significant improvements in detection probability compared to omnidirectional methods, particularly for low Signal-to-Noise Ratio (SNR) targets masked by clutter.
- Abstract(参考訳): 本稿では,第6世代(6G)ネットワークにおける統合センシングと通信への関心が高まっていることから,動的環境における堅牢なマルチターゲット検出のための強化学習(RL)により強化された認知多入力多重出力(MIMO)レーダシステムを提案する。
このシステムは平面アレイ構成を採用し、伝送波形とビームフォーミングパターンを適用し、未知の2次元(2D)外乱の存在下で検出性能を最適化する。
堅牢なウォルド型検出器は、SARSAベースのRLアルゴリズムと統合されており、レーダーは2次元自己回帰プロセスでモデル化された複雑なクラッタ環境を学習し、適応することができる。
シミュレーションの結果,全方位法に比べて検出確率が有意に向上し,特に低信号雑音比(SNR)がクラッタによって隠蔽されている。
関連論文リスト
- POMDP-Driven Cognitive Massive MIMO Radar: Joint Target Detection-Tracking In Unknown Disturbances [42.99053410696693]
この研究は、トラッキングと検出タスクを強化するために、部分的に観測可能なマルコフ決定プロセスフレームワークの適用について検討する。
提案手法では,ノイズ統計に関するアプリオリ知識を必要としないオンラインアルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-10-23T15:34:11Z) - UDHF2-Net: Uncertainty-diffusion-model-based High-Frequency TransFormer Network for Remotely Sensed Imagery Interpretation [12.24506241611653]
不確実拡散モデルに基づく高周波トランスフォーマーネットワーク(UDHF2-Net)が最初に提案される。
UDHF2-Netは空間定常非定常高周波接続パラダイム(SHCP)である
Mask-and-geo-knowledge-based uncertainty diffusion module (MUDM) は自己指導型学習戦略である。
周波数ワイド半擬似半擬似UDHF2-Netは、変更検出の精度と複雑さのバランスをとるために提案された最初のものである。
論文 参考訳(メタデータ) (2024-06-23T15:03:35Z) - MambaAD: Exploring State Space Models for Multi-class Unsupervised Anomaly Detection [53.03687787922032]
長距離モデリングと線形効率の優れたマンバモデルが注目されている。
MambaADは、事前訓練されたエンコーダと(Locality-Enhanced State Space)LSSモジュールをマルチスケールで備えたMambaデコーダで構成されている。
提案したLSSモジュールは、並列カスケード(Hybrid State Space) HSSブロックとマルチカーネル畳み込み操作を統合し、長距離情報とローカル情報の両方を効果的にキャプチャする。
論文 参考訳(メタデータ) (2024-04-09T18:28:55Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
既存の検出方法は、パラメータ化バウンディングボックス(BBox)を使用して(水平)オブジェクトをモデル化し、検出する。
このような機構は回転検出に有効な回帰損失を構築するのに基本的な限界があると主張する。
回転した物体をガウス分布としてモデル化することを提案する。
2次元から3次元へのアプローチを、方向推定を扱うアルゴリズム設計により拡張する。
論文 参考訳(メタデータ) (2022-09-22T07:50:48Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
本稿では,SkewIoU損失とトレンドレベルアライメントを両立できる近似的損失を考案する上で,有効な方法の1つとして論じる。
具体的には、対象をガウス分布としてモデル化し、SkewIoUのメカニズムを本質的に模倣するためにカルマンフィルタを採用する。
KFIoUと呼ばれる新たな損失は実装が容易で、正確なSkewIoUよりもうまく動作する。
論文 参考訳(メタデータ) (2022-01-29T10:54:57Z) - LoRD-Net: Unfolded Deep Detection Network with Low-Resolution Receivers [104.01415343139901]
本稿では,1ビット計測から情報シンボルを復元する「LoRD-Net」というディープ検出器を提案する。
LoRD-Netは、関心のシグナルを回復するためのタスクベースのアーキテクチャである。
無線通信における1ビット信号回復のためのレシーバアーキテクチャの評価を行った。
論文 参考訳(メタデータ) (2021-02-05T04:26:05Z) - Ensemble and Random Collaborative Representation-Based Anomaly Detector
for Hyperspectral Imagery [133.83048723991462]
ハイパースペクトル異常検出(HAD)のための新しいアンサンブルおよびランダム共同表現型検出器(ERCRD)を提案する。
4つの実超スペクトルデータセットを用いた実験により,提案手法の精度と効率を10段階法と比較した。
論文 参考訳(メタデータ) (2021-01-06T11:23:51Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
レーダは、他のシステムとの相互干渉を軽減するために、その線形周波数変調(LFM)波形の帯域幅と中心周波数を変化させることを学ぶ。
DQLベースのアプローチを拡張して、ダブルQ-ラーニングとリカレントニューラルネットワークを組み込んで、ダブルディープリカレントQ-ネットワークを形成する。
実験結果から,提案手法は集束スペクトル環境におけるレーダ検出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-06-23T17:21:28Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
本稿では,MMIMO(Multiple input Multiple output)認知レーダ(CR)におけるマルチターゲット検出の問題点について考察する。
本稿では,未知の外乱統計の存在下での認知的マルチターゲット検出のための強化学習(RL)に基づくアルゴリズムを提案する。
定常環境と動的環境の両方において提案したRLアルゴリズムの性能を評価するため, 数値シミュレーションを行った。
論文 参考訳(メタデータ) (2020-05-10T16:29:06Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
再構成可能なインテリジェントサーフェス(RIS)は、将来の6世代(6G)無線通信システムにおいて重要な技術の一つとして推測されている。
本稿では, 基地局におけるビームフォーミング行列とRISにおける位相シフト行列の接合設計について, 深部強化学習(DRL)の最近の進歩を活用して検討する。
提案アルゴリズムは環境から学習し、その振る舞いを徐々に改善するだけでなく、2つの最先端ベンチマークと比較して同等の性能が得られる。
論文 参考訳(メタデータ) (2020-02-24T04:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。