Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
- URL: http://arxiv.org/abs/2502.05037v1
- Date: Fri, 07 Feb 2025 16:04:37 GMT
- Title: Leveraging a Simulator for Learning Causal Representations from Post-Treatment Covariates for CATE
- Authors: Lokesh Nagalapatti, Pranava Singhal, Avishek Ghosh, Sunita Sarawagi,
- Abstract summary: Treatment effect estimation involves assessing the impact of different treatments on individual outcomes.
Current methods estimate Conditional Average Treatment Effect (CATE) using observational datasets.
We introduce SimPONet, a novel method whose loss function is inspired from our generalization bound.
- Score: 28.08128152771846
- License:
- Abstract: Treatment effect estimation involves assessing the impact of different treatments on individual outcomes. Current methods estimate Conditional Average Treatment Effect (CATE) using observational datasets where covariates are collected before treatment assignment and outcomes are observed afterward, under assumptions like positivity and unconfoundedness. In this paper, we address a scenario where both covariates and outcomes are gathered after treatment. We show that post-treatment covariates render CATE unidentifiable, and recovering CATE requires learning treatment-independent causal representations. Prior work shows that such representations can be learned through contrastive learning if counterfactual supervision is available in observational data. However, since counterfactuals are rare, other works have explored using simulators that offer synthetic counterfactual supervision. Our goal in this paper is to systematically analyze the role of simulators in estimating CATE. We analyze the CATE error of several baselines and highlight their limitations. We then establish a generalization bound that characterizes the CATE error from jointly training on real and simulated distributions, as a function of the real-simulator mismatch. Finally, we introduce SimPONet, a novel method whose loss function is inspired from our generalization bound. We further show how SimPONet adjusts the simulator's influence on the learning objective based on the simulator's relevance to the CATE task. We experiment with various DGPs, by systematically varying the real-simulator distribution gap to evaluate SimPONet's efficacy against state-of-the-art CATE baselines.
Related papers
- Causal machine learning for heterogeneous treatment effects in the presence of missing outcome data [0.9087641068861047]
We discuss the impact that missing outcome data has on causal machine learning estimators for the conditional average treatment effect (CATE)
We propose two de-biased machine learning estimators for the CATE, the mDR-learner and mEP-learner, which address the issue of under-representation.
arXiv Detail & Related papers (2024-12-27T16:10:03Z) - Estimating Conditional Average Treatment Effects via Sufficient Representation Learning [31.822980052107496]
This paper proposes a novel neural network approach named textbfCrossNet to learn a sufficient representation for the features, based on which we then estimate the conditional average treatment effects (CATE)
Numerical simulations and empirical results demonstrate that our method outperforms the competitive approaches.
arXiv Detail & Related papers (2024-08-30T07:23:59Z) - Efficient adjustment for complex covariates: Gaining efficiency with
DOPE [56.537164957672715]
We propose a framework that accommodates adjustment for any subset of information expressed by the covariates.
Based on our theoretical results, we propose the Debiased Outcome-adapted Propensity Estorimator (DOPE) for efficient estimation of the average treatment effect (ATE)
Our results show that the DOPE provides an efficient and robust methodology for ATE estimation in various observational settings.
arXiv Detail & Related papers (2024-02-20T13:02:51Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
We propose a meta-learner called the B-Learner, which can efficiently learn sharp bounds on the CATE function under limits on hidden confounding.
We prove its estimates are valid, sharp, efficient, and have a quasi-oracle property with respect to the constituent estimators under more general conditions than existing methods.
arXiv Detail & Related papers (2023-04-20T18:07:19Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Robust and Agnostic Learning of Conditional Distributional Treatment
Effects [62.44901952244514]
The conditional average treatment effect (CATE) is the best point prediction of individual causal effects.
In aggregate analyses, this is usually addressed by measuring distributional treatment effect (DTE)
We provide a new robust and model-agnostic methodology for learning the conditional DTE (CDTE) for a wide class of problems.
arXiv Detail & Related papers (2022-05-23T17:40:31Z) - Estimating Conditional Average Treatment Effects with Missing Treatment
Information [20.83151214072516]
Estimating conditional average treatment effects (CATE) is challenging when treatment information is missing.
In this paper, we analyze CATE estimation in the setting with missing treatments.
We develop MTRNet, a novel CATE estimation algorithm.
arXiv Detail & Related papers (2022-03-02T21:23:25Z) - Treatment Effect Risk: Bounds and Inference [58.442274475425144]
Since the average treatment effect measures the change in social welfare, even if positive, there is a risk of negative effect on, say, some 10% of the population.
In this paper we consider how to nonetheless assess this important risk measure, formalized as the conditional value at risk (CVaR) of the ITE distribution.
Some bounds can also be interpreted as summarizing a complex CATE function into a single metric and are of interest independently of being a bound.
arXiv Detail & Related papers (2022-01-15T17:21:26Z) - CausalSim: A Causal Framework for Unbiased Trace-Driven Simulation [25.620312665350028]
CausalSim is a causal framework for unbiased trace-driven simulation.
It learns a causal model of the system dynamics and latent factors capturing the underlying system conditions during trace collection.
It reduces errors by 53% and 61% on average compared to expert-designed and supervised learning baselines.
arXiv Detail & Related papers (2022-01-05T20:45:24Z) - Enhancing Counterfactual Classification via Self-Training [9.484178349784264]
We propose a self-training algorithm which imputes outcomes with categorical values for finite unseen actions in observational data to simulate a randomized trial through pseudolabeling.
We demonstrate the effectiveness of the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2021-12-08T18:42:58Z) - Doing Great at Estimating CATE? On the Neglected Assumptions in
Benchmark Comparisons of Treatment Effect Estimators [91.3755431537592]
We show that even in arguably the simplest setting, estimation under ignorability assumptions can be misleading.
We consider two popular machine learning benchmark datasets for evaluation of heterogeneous treatment effect estimators.
We highlight that the inherent characteristics of the benchmark datasets favor some algorithms over others.
arXiv Detail & Related papers (2021-07-28T13:21:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.