Evaluating (weighted) dynamic treatment effects by double machine
learning
- URL: http://arxiv.org/abs/2012.00370v4
- Date: Tue, 16 Feb 2021 16:05:40 GMT
- Title: Evaluating (weighted) dynamic treatment effects by double machine
learning
- Authors: Hugo Bodory, Martin Huber, Luk\'a\v{s} Laff\'ers
- Abstract summary: We consider evaluating the causal effects of dynamic treatments in a data-driven way under a selection-on-observables assumption.
We make use of so-called Neyman-orthogonal score functions, which imply the robustness of treatment effect estimation to moderate (local) misspecifications.
We demonstrate that the estimators are regularityally normal and $sqrtn$-consistent under specific conditions.
- Score: 0.12891210250935145
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider evaluating the causal effects of dynamic treatments, i.e. of
multiple treatment sequences in various periods, based on double machine
learning to control for observed, time-varying covariates in a data-driven way
under a selection-on-observables assumption. To this end, we make use of
so-called Neyman-orthogonal score functions, which imply the robustness of
treatment effect estimation to moderate (local) misspecifications of the
dynamic outcome and treatment models. This robustness property permits
approximating outcome and treatment models by double machine learning even
under high dimensional covariates and is combined with data splitting to
prevent overfitting. In addition to effect estimation for the total population,
we consider weighted estimation that permits assessing dynamic treatment
effects in specific subgroups, e.g. among those treated in the first treatment
period. We demonstrate that the estimators are asymptotically normal and
$\sqrt{n}$-consistent under specific regularity conditions and investigate
their finite sample properties in a simulation study. Finally, we apply the
methods to the Job Corps study in order to assess different sequences of
training programs under a large set of covariates.
Related papers
- Difference-in-Differences with Time-varying Continuous Treatments using Double/Debiased Machine Learning [0.0]
We propose a difference-in-differences (DiD) method for continuous treatment and multiple time periods.
Our framework assesses the average treatment effect on the treated (ATET) when comparing two non-zero treatment doses.
arXiv Detail & Related papers (2024-10-28T15:10:43Z) - TCFimt: Temporal Counterfactual Forecasting from Individual Multiple
Treatment Perspective [50.675845725806724]
We propose a comprehensive framework of temporal counterfactual forecasting from an individual multiple treatment perspective (TCFimt)
TCFimt constructs adversarial tasks in a seq2seq framework to alleviate selection and time-varying bias and designs a contrastive learning-based block to decouple a mixed treatment effect into separated main treatment effects and causal interactions.
The proposed method shows satisfactory performance in predicting future outcomes with specific treatments and in choosing optimal treatment type and timing than state-of-the-art methods.
arXiv Detail & Related papers (2022-12-17T15:01:05Z) - Benchmarking Heterogeneous Treatment Effect Models through the Lens of
Interpretability [82.29775890542967]
Estimating personalized effects of treatments is a complex, yet pervasive problem.
Recent developments in the machine learning literature on heterogeneous treatment effect estimation gave rise to many sophisticated, but opaque, tools.
We use post-hoc feature importance methods to identify features that influence the model's predictions.
arXiv Detail & Related papers (2022-06-16T17:59:05Z) - Continuous-Time Modeling of Counterfactual Outcomes Using Neural
Controlled Differential Equations [84.42837346400151]
Estimating counterfactual outcomes over time has the potential to unlock personalized healthcare.
Existing causal inference approaches consider regular, discrete-time intervals between observations and treatment decisions.
We propose a controllable simulation environment based on a model of tumor growth for a range of scenarios.
arXiv Detail & Related papers (2022-06-16T17:15:15Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Dynamic covariate balancing: estimating treatment effects over time with
potential local projections [0.32634122554914]
We study the estimation and inference of treatment histories in panel data settings when treatments change dynamically over time.
Our approach projects potential outcomes' expectations on past histories.
arXiv Detail & Related papers (2021-03-01T19:53:32Z) - Weighting-Based Treatment Effect Estimation via Distribution Learning [14.438302755258547]
We develop a distribution learning-based weighting method for treatment effect estimation.
Our method outperforms several cutting-edge weighting-only benchmarking methods.
It maintains its advantage under a doubly-robust estimation framework.
arXiv Detail & Related papers (2020-12-26T20:15:44Z) - Double machine learning for sample selection models [0.12891210250935145]
This paper considers the evaluation of discretely distributed treatments when outcomes are only observed for a subpopulation due to sample selection or outcome attrition.
We make use of (a) Neyman-orthogonal, doubly robust, and efficient score functions, which imply the robustness of treatment effect estimation to moderate regularization biases in the machine learning-based estimation of the outcome, treatment, or sample selection models and (b) sample splitting (or cross-fitting) to prevent overfitting bias.
arXiv Detail & Related papers (2020-11-30T19:40:21Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Generalization Bounds and Representation Learning for Estimation of
Potential Outcomes and Causal Effects [61.03579766573421]
We study estimation of individual-level causal effects, such as a single patient's response to alternative medication.
We devise representation learning algorithms that minimize our bound, by regularizing the representation's induced treatment group distance.
We extend these algorithms to simultaneously learn a weighted representation to further reduce treatment group distances.
arXiv Detail & Related papers (2020-01-21T10:16:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.