FlightForge: Advancing UAV Research with Procedural Generation of High-Fidelity Simulation and Integrated Autonomy
- URL: http://arxiv.org/abs/2502.05038v1
- Date: Fri, 07 Feb 2025 16:05:17 GMT
- Title: FlightForge: Advancing UAV Research with Procedural Generation of High-Fidelity Simulation and Integrated Autonomy
- Authors: David Čapek, Jan Hrnčíř, Tomáš Báča, Jakub Jirkal, Vojtěch Vonásek, Robert Pěnička, Martin Saska,
- Abstract summary: We propose the novel FlightForge UAV open-source simulator.
It offers advanced rendering capabilities, diverse control modalities, and, foremost, procedural generation of environments.
The simulator is already integrated with a fully autonomous UAV system capable of long-range flights in cluttered unknown environments.
- Score: 2.6003704171754416
- License:
- Abstract: Robotic simulators play a crucial role in the development and testing of autonomous systems, particularly in the realm of Uncrewed Aerial Vehicles (UAV). However, existing simulators often lack high-level autonomy, hindering their immediate applicability to complex tasks such as autonomous navigation in unknown environments. This limitation stems from the challenge of integrating realistic physics, photorealistic rendering, and diverse sensor modalities into a single simulation environment. At the same time, the existing photorealistic UAV simulators use mostly hand-crafted environments with limited environment sizes, which prevents the testing of long-range missions. This restricts the usage of existing simulators to only low-level tasks such as control and collision avoidance. To this end, we propose the novel FlightForge UAV open-source simulator. FlightForge offers advanced rendering capabilities, diverse control modalities, and, foremost, procedural generation of environments. Moreover, the simulator is already integrated with a fully autonomous UAV system capable of long-range flights in cluttered unknown environments. The key innovation lies in novel procedural environment generation and seamless integration of high-level autonomy into the simulation environment. Experimental results demonstrate superior sensor rendering capability compared to existing simulators, and also the ability of autonomous navigation in almost infinite environments.
Related papers
- DrivingSphere: Building a High-fidelity 4D World for Closed-loop Simulation [54.02069690134526]
We propose DrivingSphere, a realistic and closed-loop simulation framework.
Its core idea is to build 4D world representation and generate real-life and controllable driving scenarios.
By providing a dynamic and realistic simulation environment, DrivingSphere enables comprehensive testing and validation of autonomous driving algorithms.
arXiv Detail & Related papers (2024-11-18T03:00:33Z) - DroneWiS: Automated Simulation Testing of small Unmanned Aerial Systems in Realistic Windy Conditions [8.290044674335473]
DroneWiS allows sUAS developers to automatically simulate realistic windy conditions and test the resilience of sUAS against wind.
Unlike current state-of-the-art simulation tools such as Gazebo and AirSim, DroneWiS leverages Computational Fluid Dynamics (CFD) to compute the unique wind flows.
This simulation capability provides deeper insights to developers about the navigation capability of sUAS in challenging and realistic windy conditions.
arXiv Detail & Related papers (2024-08-29T14:25:11Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks.
We first build a simulator by integrating Gaussian splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks.
In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, programming of expert demonstration training data, and the task understanding capabilities of Liquid networks.
arXiv Detail & Related papers (2024-06-21T13:48:37Z) - GarchingSim: An Autonomous Driving Simulator with Photorealistic Scenes
and Minimalist Workflow [24.789118651720045]
We introduce an autonomous driving simulator with photorealistic scenes.
The simulator is able to communicate with external algorithms through ROS2 or Socket.IO.
We implement a highly accurate vehicle dynamics model within the simulator to enhance the realism of the vehicle's physical effects.
arXiv Detail & Related papers (2024-01-28T23:26:15Z) - Waymax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous
Driving Research [76.93956925360638]
Waymax is a new data-driven simulator for autonomous driving in multi-agent scenes.
It runs entirely on hardware accelerators such as TPUs/GPUs and supports in-graph simulation for training.
We benchmark a suite of popular imitation and reinforcement learning algorithms with ablation studies on different design decisions.
arXiv Detail & Related papers (2023-10-12T20:49:15Z) - UniSim: A Neural Closed-Loop Sensor Simulator [76.79818601389992]
We present UniSim, a neural sensor simulator that takes a single recorded log captured by a sensor-equipped vehicle.
UniSim builds neural feature grids to reconstruct both the static background and dynamic actors in the scene.
We incorporate learnable priors for dynamic objects, and leverage a convolutional network to complete unseen regions.
arXiv Detail & Related papers (2023-08-03T17:56:06Z) - DroneReqValidator: Facilitating High Fidelity Simulation Testing for
Uncrewed Aerial Systems Developers [8.290044674335473]
sUAS developers aim to validate the reliability and safety of their applications through simulation testing.
The dynamic nature of the real-world environment causes unique software faults that may only be revealed through field testing.
DroneReqValidator (DRV) offers a comprehensive small Unmanned Aerial Vehicle (sUAV) simulation ecosystem.
arXiv Detail & Related papers (2023-07-31T22:13:57Z) - Generative AI-empowered Simulation for Autonomous Driving in Vehicular
Mixed Reality Metaverses [130.15554653948897]
In vehicular mixed reality (MR) Metaverse, distance between physical and virtual entities can be overcome.
Large-scale traffic and driving simulation via realistic data collection and fusion from the physical world is difficult and costly.
We propose an autonomous driving architecture, where generative AI is leveraged to synthesize unlimited conditioned traffic and driving data in simulations.
arXiv Detail & Related papers (2023-02-16T16:54:10Z) - Exploration of AI-Oriented Power System Transient Stability Simulations [2.182997852215525]
It is foreseeable that the future power system transient stability simulations will be deeply integrated with AI.
Existing power system dynamic simulation tools are not AI-friendly enough.
A general design of an AI-oriented power system transient stability simulator is proposed.
arXiv Detail & Related papers (2021-10-03T06:01:45Z) - DriveGAN: Towards a Controllable High-Quality Neural Simulation [147.6822288981004]
We introduce a novel high-quality neural simulator referred to as DriveGAN.
DriveGAN achieves controllability by disentangling different components without supervision.
We train DriveGAN on multiple datasets, including 160 hours of real-world driving data.
arXiv Detail & Related papers (2021-04-30T15:30:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.