論文の概要: Federated Learning for Anomaly Detection in Energy Consumption Data: Assessing the Vulnerability to Adversarial Attacks
- arxiv url: http://arxiv.org/abs/2502.05041v1
- Date: Fri, 07 Feb 2025 16:08:20 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:16.715233
- Title: Federated Learning for Anomaly Detection in Energy Consumption Data: Assessing the Vulnerability to Adversarial Attacks
- Title(参考訳): エネルギー消費データにおける異常検出のためのフェデレーション学習 : 敵攻撃に対する脆弱性の評価
- Authors: Yohannis Kifle Telila, Damitha Senevirathne, Dumindu Tissera, Apurva Narayan, Miriam A. M. Capretz, Katarina Grolinger,
- Abstract要約: 異常検出は、機器の故障、エネルギー盗難、その他の問題を示す不規則なパターンを特定するために、エネルギーセクターにおいて不可欠である。
ローカルデータを共有せずに分散学習を可能にするため、フェデレートラーニング(FL)が人気を集めている。
本稿では,FLによるエネルギーデータ中の異常検出の脆弱性を敵攻撃に対して評価する。
- 参考スコア(独自算出の注目度): 0.8576354642891824
- License:
- Abstract: Anomaly detection is crucial in the energy sector to identify irregular patterns indicating equipment failures, energy theft, or other issues. Machine learning techniques for anomaly detection have achieved great success, but are typically centralized, involving sharing local data with a central server which raises privacy and security concerns. Federated Learning (FL) has been gaining popularity as it enables distributed learning without sharing local data. However, FL depends on neural networks, which are vulnerable to adversarial attacks that manipulate data, leading models to make erroneous predictions. While adversarial attacks have been explored in the image domain, they remain largely unexplored in time series problems, especially in the energy domain. Moreover, the effect of adversarial attacks in the FL setting is also mostly unknown. This paper assesses the vulnerability of FL-based anomaly detection in energy data to adversarial attacks. Specifically, two state-of-the-art models, Long Short Term Memory (LSTM) and Transformers, are used to detect anomalies in an FL setting, and two white-box attack methods, Fast Gradient Sign Method (FGSM) and Projected Gradient Descent (PGD), are employed to perturb the data. The results show that FL is more sensitive to PGD attacks than to FGSM attacks, attributed to PGD's iterative nature, resulting in an accuracy drop of over 10% even with naive, weaker attacks. Moreover, FL is more affected by these attacks than centralized learning, highlighting the need for defense mechanisms in FL.
- Abstract(参考訳): 異常検出は、機器の故障、エネルギー盗難、その他の問題を示す不規則なパターンを特定するために、エネルギーセクターにおいて不可欠である。
異常検出のための機械学習技術は大きな成功を収めているが、一般的には集中型であり、プライバシとセキュリティ上の懸念を提起する中央サーバとローカルデータを共有している。
ローカルデータを共有せずに分散学習を可能にするため、フェデレートラーニング(FL)が人気を集めている。
しかし、FLはデータを操作する敵攻撃に弱いニューラルネットワークに依存しており、誤った予測を行うモデルとなっている。
画像領域では敵攻撃が検討されているが、時系列問題、特にエネルギー領域では探索されていない。
さらに、FL設定における敵攻撃の影響もほとんど不明である。
本稿では,FLによるエネルギーデータ中の異常検出の脆弱性を敵攻撃に対して評価する。
具体的には、2つの最先端モデルLSTM(Long Short Term Memory)とTransformers(Transformers)を使用してFL設定の異常を検知し、2つのホワイトボックス攻撃方法であるFast Gradient Sign Method(FGSM)とProjected Gradient Descent(PGD)を用いてデータを摂動する。
その結果, FL は FGSM 攻撃よりも PGD 攻撃に敏感であり, PGD の反復性に起因し, 単純で弱い攻撃でも 10% 以上の精度低下がみられた。
さらに、FLは集中学習よりもこれらの攻撃の影響を受けており、FLの防御機構の必要性を強調している。
関連論文リスト
- Enforcing Fundamental Relations via Adversarial Attacks on Input Parameter Correlations [76.2226569692207]
入力パラメータ間の相関は、多くの科学的分類タスクにおいて重要な役割を果たす。
我々はRandom Distribution Shuffle Attack (RDSA)と呼ばれる新たな敵攻撃アルゴリズムを提案する。
6つの分類課題においてRDSAの有効性を示す。
論文 参考訳(メタデータ) (2025-01-09T21:45:09Z) - Formal Logic-guided Robust Federated Learning against Poisoning Attacks [6.997975378492098]
Federated Learning (FL)は、集中型機械学習(ML)に関連するプライバシー問題に対して、有望な解決策を提供する。
FLは、敵クライアントがトレーニングデータやモデル更新を操作して全体的なモデルパフォーマンスを低下させる、毒殺攻撃など、さまざまなセキュリティ上の脅威に対して脆弱である。
本稿では,時系列タスクにおけるフェデレート学習における中毒攻撃の軽減を目的とした防御機構を提案する。
論文 参考訳(メタデータ) (2024-11-05T16:23:19Z) - Poisoning with A Pill: Circumventing Detection in Federated Learning [33.915489514978084]
本稿では,FLにおける検出に対する既存のFL中毒攻撃の有効性とステルス性を高めるために,汎用的かつ攻撃に依存しない拡張手法を提案する。
具体的には、FLトレーニング中に、戦略的にピルを構築、生成、注入する3段階の方法論を用いており、それに従ってピル構築、ピル中毒およびピル注入と命名されている。
論文 参考訳(メタデータ) (2024-07-22T05:34:47Z) - Enabling Privacy-Preserving Cyber Threat Detection with Federated Learning [4.475514208635884]
本研究は, プライバシー保護型サイバー脅威検出のための学習の可能性について, 有効性, ビザンチンレジリエンス, 効率の観点から, 体系的に検証した。
FLトレーニングされた検出モデルは、中央訓練された検出モデルに匹敵する性能が得られることを示す。
現実的な脅威モデルの下では、FLはデータ中毒とモデル中毒の両方の攻撃に対して抵抗性があることが判明した。
論文 参考訳(メタデータ) (2024-04-08T01:16:56Z) - FreqFed: A Frequency Analysis-Based Approach for Mitigating Poisoning
Attacks in Federated Learning [98.43475653490219]
フェデレート・ラーニング(Federated Learning, FL)は、毒素による攻撃を受けやすい。
FreqFedは、モデルの更新を周波数領域に変換する新しいアグリゲーションメカニズムである。
FreqFedは, 凝集モデルの有用性に悪影響を及ぼすことなく, 毒性攻撃を効果的に軽減できることを実証した。
論文 参考訳(メタデータ) (2023-12-07T16:56:24Z) - Data-Agnostic Model Poisoning against Federated Learning: A Graph
Autoencoder Approach [65.2993866461477]
本稿では,フェデレートラーニング(FL)に対するデータに依存しないモデル中毒攻撃を提案する。
この攻撃はFLトレーニングデータの知識を必要とせず、有効性と検出不能の両方を達成する。
実験により、FLの精度は提案した攻撃の下で徐々に低下し、既存の防御機構では検出できないことが示された。
論文 参考訳(メタデータ) (2023-11-30T12:19:10Z) - Avoid Adversarial Adaption in Federated Learning by Multi-Metric
Investigations [55.2480439325792]
Federated Learning(FL)は、分散機械学習モデルのトレーニング、データのプライバシの保護、通信コストの低減、多様化したデータソースによるモデルパフォーマンスの向上を支援する。
FLは、中毒攻撃、標的外のパフォーマンス劣化とターゲットのバックドア攻撃の両方でモデルの整合性を損なうような脆弱性に直面している。
我々は、複数の目的に同時に適応できる、強い適応的敵の概念を新たに定義する。
MESASは、実際のデータシナリオで有効であり、平均オーバーヘッドは24.37秒である。
論文 参考訳(メタデータ) (2023-06-06T11:44:42Z) - Do Gradient Inversion Attacks Make Federated Learning Unsafe? [70.0231254112197]
フェデレートラーニング(FL)は、生データを共有することなく、AIモデルの協調トレーニングを可能にする。
モデル勾配からのディープニューラルネットワークの反転に関する最近の研究は、トレーニングデータの漏洩を防止するためのFLの安全性に関する懸念を提起した。
本研究では,本論文で提示されたこれらの攻撃が実際のFLユースケースでは実行不可能であることを示し,新たなベースライン攻撃を提供する。
論文 参考訳(メタデータ) (2022-02-14T18:33:12Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
フェデレートラーニング(FL)は、クライアントのネットワーク(エッジデバイス)でプライバシ保護、分散ラーニングを行うための有望な戦略である。
論文 参考訳(メタデータ) (2021-11-28T19:03:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。