Hybrid machine learning based scale bridging framework for permeability prediction of fibrous structures
- URL: http://arxiv.org/abs/2502.05044v1
- Date: Fri, 07 Feb 2025 16:09:25 GMT
- Title: Hybrid machine learning based scale bridging framework for permeability prediction of fibrous structures
- Authors: Denis Korolev, Tim Schmidt, Dinesh K. Natarajan, Stefano Cassola, David May, Miro Duhovic, Michael Hintermüller,
- Abstract summary: This study introduces a hybrid machine learning-based scale-bridging framework for predicting the permeability of fibrous textile structures.<n>Four methodologies were evaluated: Single Scale Method (SSM), Simple Upscaling Method (SUM), Scale-Bridging Method (SBM), and Fully Resolved Model (FRM)
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a hybrid machine learning-based scale-bridging framework for predicting the permeability of fibrous textile structures. By addressing the computational challenges inherent to multiscale modeling, the proposed approach evaluates the efficiency and accuracy of different scale-bridging methodologies combining traditional surrogate models and even integrating physics-informed neural networks (PINNs) with numerical solvers, enabling accurate permeability predictions across micro- and mesoscales. Four methodologies were evaluated: Single Scale Method (SSM), Simple Upscaling Method (SUM), Scale-Bridging Method (SBM), and Fully Resolved Model (FRM). SSM, the simplest method, neglects microscale permeability and exhibited permeability values deviating by up to 150\% of the FRM model, which was taken as ground truth at an equivalent lower fiber volume content. SUM improved predictions by considering uniform microscale permeability, yielding closer values under similar conditions, but still lacked structural variability. The SBM method, incorporating segment-based microscale permeability assignments, showed significant enhancements, achieving almost equivalent values while maintaining computational efficiency and modeling runtimes of ~45 minutes per simulation. In contrast, FRM, which provides the highest fidelity by fully resolving microscale and mesoscale geometries, required up to 270 times more computational time than SSM, with model files exceeding 300 GB. Additionally, a hybrid dual-scale solver incorporating PINNs has been developed and shows the potential to overcome generalization errors and the problem of data scarcity of the data-driven surrogate approaches. The hybrid framework advances permeability modelling by balancing computational cost and prediction reliability, laying the foundation for further applications in fibrous composite manufacturing.
Related papers
- A Deep Bayesian Nonparametric Framework for Robust Mutual Information Estimation [9.68824512279232]
Mutual Information (MI) is a crucial measure for capturing dependencies between variables.
We present a solution for training an MI estimator by constructing the MI loss with a finite representation of the Dirichlet process posterior to incorporate regularization.
We explore the application of our estimator in maximizing MI between the data space and the latent space of a variational autoencoder.
arXiv Detail & Related papers (2025-03-11T21:27:48Z) - Symmetry-Preserving Diffusion Models via Target Symmetrization [43.83899968118655]
We propose a novel approach that enforces equivariance through a symmetrized loss function.
Our method uses Monte Carlo sampling to estimate the average, incurring minimal computational overhead.
Experiments show improved sample quality compared to existing methods.
arXiv Detail & Related papers (2025-02-14T03:26:57Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
Amyotrophic Lateral Sclerosis (ALS) is a rapidly progressive neurodegenerative disease that presents individuals with limited treatment options.
The present investigation, spearheaded by the iDPP@CLEF 2024 challenge, focuses on utilizing sensor-derived data obtained through an app.
arXiv Detail & Related papers (2024-07-10T19:17:23Z) - Addressing Misspecification in Simulation-based Inference through Data-driven Calibration [43.811367860375825]
Recent work has demonstrated that model misspecification can harm simulation-based inference's reliability.
This work introduces robust posterior estimation (ROPE), a framework that overcomes model misspecification with a small real-world calibration set of ground truth parameter measurements.
arXiv Detail & Related papers (2024-05-14T16:04:39Z) - A Microstructure-based Graph Neural Network for Accelerating Multiscale
Simulations [0.0]
We introduce an alternative surrogate modeling strategy that allows for keeping the multiscale nature of the problem.
We achieve this by predicting full-field microscopic strains using a graph neural network (GNN) while retaining the microscopic material model.
We demonstrate for several challenging scenarios that the surrogate can predict complex macroscopic stress-strain paths.
arXiv Detail & Related papers (2024-02-20T15:54:24Z) - AI enhanced data assimilation and uncertainty quantification applied to
Geological Carbon Storage [0.0]
We introduce the Surrogate-based hybrid ESMDA (SH-ESMDA), an adaptation of the traditional Ensemble Smoother with Multiple Data Assimilation (ESMDA)
We also introduce Surrogate-based Hybrid RML (SH-RML), a variational data assimilation approach that relies on the randomized maximum likelihood (RML)
Our comparative analyses show that SH-RML offers better uncertainty compared to conventional ESMDA for the case study.
arXiv Detail & Related papers (2024-02-09T00:24:46Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Consistency Models for Scalable and Fast Simulation-Based Inference [9.27488642055461]
We present consistency models for posterior estimation (CMPE), a new conditional sampler for simulation-based inference ( SBI)
CMPE essentially distills a continuous probability flow and enables rapid few-shot inference with an unconstrained architecture.
Our empirical evaluation demonstrates that CMPE not only outperforms current state-of-the-art algorithms on hard low-dimensional benchmarks, but also achieves competitive performance with much faster sampling speed.
arXiv Detail & Related papers (2023-12-09T02:14:12Z) - Maximum Likelihood Learning of Unnormalized Models for Simulation-Based
Inference [44.281860162298564]
We introduce two synthetic likelihood methods for Simulation-Based Inference.
We learn a conditional energy-based model (EBM) of the likelihood using synthetic data generated by the simulator.
We demonstrate the properties of both methods on a range of synthetic datasets, and apply them to a model of the neuroscience network in the crab.
arXiv Detail & Related papers (2022-10-26T14:38:24Z) - Information Theoretic Structured Generative Modeling [13.117829542251188]
A novel generative model framework called the structured generative model (SGM) is proposed that makes straightforward optimization possible.
The implementation employs a single neural network driven by an orthonormal input to a single white noise source adapted to learn an infinite Gaussian mixture model.
Preliminary results show that SGM significantly improves MINE estimation in terms of data efficiency and variance, conventional and variational Gaussian mixture models, as well as for training adversarial networks.
arXiv Detail & Related papers (2021-10-12T07:44:18Z) - Efficient Micro-Structured Weight Unification and Pruning for Neural
Network Compression [56.83861738731913]
Deep Neural Network (DNN) models are essential for practical applications, especially for resource limited devices.
Previous unstructured or structured weight pruning methods can hardly truly accelerate inference.
We propose a generalized weight unification framework at a hardware compatible micro-structured level to achieve high amount of compression and acceleration.
arXiv Detail & Related papers (2021-06-15T17:22:59Z) - Model-data-driven constitutive responses: application to a multiscale
computational framework [0.0]
A hybrid methodology is presented which combines classical laws (model-based), a data-driven correction component, and computational multiscale approaches.
A model-based material representation is locally improved with data from lower scales obtained by means of a nonlinear numerical homogenization procedure.
In the proposed approach, both model and data play a fundamental role allowing for the synergistic integration between a physics-based response and a machine learning black-box.
arXiv Detail & Related papers (2021-04-06T16:34:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.