Towards Robust Surrogate Models: Benchmarking Machine Learning Approaches to Expediting Phase Field Simulations of Brittle Fracture
- URL: http://arxiv.org/abs/2507.07237v1
- Date: Wed, 09 Jul 2025 19:14:56 GMT
- Title: Towards Robust Surrogate Models: Benchmarking Machine Learning Approaches to Expediting Phase Field Simulations of Brittle Fracture
- Authors: Erfan Hamdi, Emma Lejeune,
- Abstract summary: We introduce a dataset based on PFM simulations designed to benchmark and advance ML methods for fracture modeling.<n>This dataset includes three energy decomposition methods, two boundary conditions, and 1,000 random initial crack configurations for a total of 6,000 simulations.<n>Our results highlight both the promise and limitations of popular current models, and demonstrate the utility of this dataset as a testbed for advancing machine learning in fracture mechanics research.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Data driven approaches have the potential to make modeling complex, nonlinear physical phenomena significantly more computationally tractable. For example, computational modeling of fracture is a core challenge where machine learning techniques have the potential to provide a much needed speedup that would enable progress in areas such as mutli-scale modeling and uncertainty quantification. Currently, phase field modeling (PFM) of fracture is one such approach that offers a convenient variational formulation to model crack nucleation, branching and propagation. To date, machine learning techniques have shown promise in approximating PFM simulations. However, most studies rely on overly simple benchmarks that do not reflect the true complexity of the fracture processes where PFM excels as a method. To address this gap, we introduce a challenging dataset based on PFM simulations designed to benchmark and advance ML methods for fracture modeling. This dataset includes three energy decomposition methods, two boundary conditions, and 1,000 random initial crack configurations for a total of 6,000 simulations. Each sample contains 100 time steps capturing the temporal evolution of the crack field. Alongside this dataset, we also implement and evaluate Physics Informed Neural Networks (PINN), Fourier Neural Operators (FNO) and UNet models as baselines, and explore the impact of ensembling strategies on prediction accuracy. With this combination of our dataset and baseline models drawn from the literature we aim to provide a standardized and challenging benchmark for evaluating machine learning approaches to solid mechanics. Our results highlight both the promise and limitations of popular current models, and demonstrate the utility of this dataset as a testbed for advancing machine learning in fracture mechanics research.
Related papers
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Towards Learning Stochastic Population Models by Gradient Descent [0.0]
We show that simultaneous estimation of parameters and structure poses major challenges for optimization procedures.
We demonstrate accurate estimation of models but find that enforcing the inference of parsimonious, interpretable models drastically increases the difficulty.
arXiv Detail & Related papers (2024-04-10T14:38:58Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Towards Theoretical Understandings of Self-Consuming Generative Models [56.84592466204185]
This paper tackles the emerging challenge of training generative models within a self-consuming loop.
We construct a theoretical framework to rigorously evaluate how this training procedure impacts the data distributions learned by future models.
We present results for kernel density estimation, delivering nuanced insights such as the impact of mixed data training on error propagation.
arXiv Detail & Related papers (2024-02-19T02:08:09Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Addressing computational challenges in physical system simulations with
machine learning [0.0]
We present a machine learning-based data generator framework tailored to aid researchers who utilize simulations to examine various physical systems or processes.
Our approach involves a two-step process: first, we train a supervised predictive model using a limited simulated dataset to predict simulation outcomes.
Subsequently, a reinforcement learning agent is trained to generate accurate, simulation-like data by leveraging the supervised model.
arXiv Detail & Related papers (2023-05-16T17:31:50Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - Fitting a Directional Microstructure Model to Diffusion-Relaxation MRI
Data with Self-Supervised Machine Learning [2.8167227950959206]
Self-supervised machine learning is emerging as an attractive alternative to supervised learning.
In this paper, we demonstrate self-supervised machine learning model fitting for a directional microstructural model.
Our approach shows clear improvements in parameter estimation and computational time, compared to standard non-linear least squares fitting.
arXiv Detail & Related papers (2022-10-05T15:51:39Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - A Meta-learning Approach to Reservoir Computing: Time Series Prediction
with Limited Data [0.0]
We present a data-driven approach to automatically extract an appropriate model structure from experimentally observed processes.
We demonstrate our approach on a simple benchmark problem, where it beats the state of the art meta-learning techniques.
arXiv Detail & Related papers (2021-10-07T18:23:14Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Deep Bayesian Active Learning for Accelerating Stochastic Simulation [74.58219903138301]
Interactive Neural Process (INP) is a deep active learning framework for simulations and with active learning approaches.
For active learning, we propose a novel acquisition function, Latent Information Gain (LIG), calculated in the latent space of NP based models.
The results demonstrate STNP outperforms the baselines in the learning setting and LIG achieves the state-of-the-art for active learning.
arXiv Detail & Related papers (2021-06-05T01:31:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.