論文の概要: Preference-aware compensation policies for crowdsourced on-demand services
- arxiv url: http://arxiv.org/abs/2502.05060v1
- Date: Fri, 07 Feb 2025 16:33:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:57:15.949645
- Title: Preference-aware compensation policies for crowdsourced on-demand services
- Title(参考訳): クラウドソーシング型オンデマンドサービスにおける優先対応型補償政策
- Authors: Georgina Nouli, Axel Parmentier, Maximilian Schiffer,
- Abstract要約: クラウドソーシングされたオンデマンドサービスは、コスト削減、サービス充足時間の短縮、適応性の向上、オンデマンドデリバリのコンテキストにおける持続可能な都市交通へのコントリビューションといったメリットを提供する。
しかし、クラウドソーシングを活用したオンデマンドプラットフォームの成功は、ギグワーカーの魅力的なオファーと収益性の確保のバランスをとるための補償策を見つけることに依存している。
本研究では、ギグワーカーの要求特化報酬を個別の時間枠で設定するオンデマンドプラットフォームにおける動的価格問題について検討する。
- 参考スコア(独自算出の注目度): 3.9244028387955017
- License:
- Abstract: Crowdsourced on-demand services offer benefits such as reduced costs, faster service fulfillment times, greater adaptability, and contributions to sustainable urban transportation in on-demand delivery contexts. However, the success of an on-demand platform that utilizes crowdsourcing relies on finding a compensation policy that strikes a balance between creating attractive offers for gig workers and ensuring profitability. In this work, we examine a dynamic pricing problem for an on-demand platform that sets request-specific compensation of gig workers in a discrete-time framework, where requests and workers arrive stochastically. The operator's goal is to determine a compensation policy that maximizes the total expected reward over the time horizon. Our approach introduces compensation strategies that explicitly account for gig worker request preferences. To achieve this, we employ the Multinomial Logit model to represent the acceptance probabilities of gig workers, and, as a result, derive an analytical solution that utilizes post-decision states. Subsequently, we integrate this solution into an approximate dynamic programming algorithm. We compare our algorithm against benchmark algorithms, including formula-based policies and an upper bound provided by the full information linear programming solution. Our algorithm demonstrates consistent performance across diverse settings, achieving improvements of at least 2.5-7.5% in homogeneous gig worker populations and 9% in heterogeneous populations over benchmarks, based on fully synthetic data. For real-world data, it surpasses benchmarks by 8% in weak and 20% in strong location preference scenarios.
- Abstract(参考訳): クラウドソーシングされたオンデマンドサービスは、コスト削減、サービス充足時間の短縮、適応性の向上、オンデマンドデリバリのコンテキストにおける持続可能な都市交通へのコントリビューションといったメリットを提供する。
しかし、クラウドソーシングを活用したオンデマンドプラットフォームの成功は、ギグワーカーの魅力的なオファーと収益性の確保のバランスをとるための補償策を見つけることに依存している。
本研究では,要求と作業員が確率的に到着する離散時間フレームワークにおいて,ギグワーカーの要求固有の補償を設定するオンデマンドプラットフォームにおける動的価格問題について検討する。
オペレーターの目標は、時間的地平線上で期待される全報酬を最大化する補償ポリシーを決定することである。
提案手法では,ギグワーカーの要求を明示的に考慮した補償戦略を導入する。
これを実現するために,ギグワーカーの受入確率を表す多項ロジットモデルを用い,その結果,意思決定後状態を利用した解析解が導出される。
その後、この解を近似動的プログラミングアルゴリズムに統合する。
本アルゴリズムは,公式ベースのポリシや,完全情報線形プログラミングソリューションによって提供される上限を含む,ベンチマークアルゴリズムと比較する。
本アルゴリズムは, 多様な環境において一貫した性能を示し, 完全合成データに基づいて, 均質ギグワーカーの少なくとも2.5-7.5%, ベンチマーク上の異質ギグワーカーの9%の改善を実現している。
実世界のデータでは、ベンチマークを8%上回り、強い位置優先のシナリオでは20%である。
関連論文リスト
- Dynamic Matching with Post-allocation Service and its Application to Refugee Resettlement [1.9689888982532262]
米国の主要難民再定住機関との協力により、我々は、新しい到着(避難ケース)が静的リソースの1つ(固定年限の場所)と即時かつ不可逆的に一致しなければならない動的なマッチング問題を調査した。
サービスの時間的特性を考えると、サーバは特定の時点では利用できないため、動的リソースとして参照する。一致すれば、ケースは第一級サービスとして利用できるようになるのを待つことになる。
論文 参考訳(メタデータ) (2024-10-30T13:17:38Z) - Fairness Incentives in Response to Unfair Dynamic Pricing [7.991187769447732]
我々は基本的な模擬経済を設計し、公正な価格設定の行動を採用するよう企業にインセンティブを与えるために法人税のスケジュールを作成する。
可能な政策シナリオを網羅するため、我々は、ソーシャルプランナーの学習問題を、マルチアームバンディット、コンテキストバンディット、およびフル強化学習(RL)問題として定式化する。
社会的福祉はフェアネス非依存ベースラインのそれよりも改善し,マルチアームおよびコンテキストバンディット設定のための分析学的に最適なフェアネス対応ベースラインにアプローチすることを発見した。
論文 参考訳(メタデータ) (2024-04-22T23:12:58Z) - Vision-based Semantic Communications for Metaverse Services: A Contest
Theoretic Approach [66.10465001046762]
Metaverseでは、アバターを更新し、ユーザの振る舞いを反映してレンダリングする必要がある。
ユーザとMPP間のインタラクションをモデル化する意味コミュニケーションフレームワークを提案する。
我々はセマンティック通信技術を用いて送信するデータの量を削減する。
論文 参考訳(メタデータ) (2023-08-15T07:56:33Z) - Dynamic Resource Allocation for Metaverse Applications with Deep
Reinforcement Learning [64.75603723249837]
そこで本研究では,Metaverse アプリケーション用の異なるタイプのリソースを動的に管理・割り当てする新しいフレームワークを提案する。
まず,アプリケーション間で共通関数を共有できるMetaInstancesという,アプリケーションをグループに分割する効果的なソリューションを提案する。
そこで我々は,要求到着プロセスとアプリケーション離脱プロセスのリアルタイム,動的,不確実な特性を捉えるために,セミマルコフ決定プロセスに基づくフレームワークを開発する。
論文 参考訳(メタデータ) (2023-02-27T00:30:01Z) - When Demonstrations Meet Generative World Models: A Maximum Likelihood
Framework for Offline Inverse Reinforcement Learning [62.00672284480755]
本稿では, 専門家エージェントから, 一定の有限個の実演において観測された動作を過小評価する報酬と環境力学の構造を復元することを目的とする。
タスクを実行するための正確な専門知識モデルは、臨床的意思決定や自律運転のような安全に敏感な応用に応用できる。
論文 参考訳(メタデータ) (2023-02-15T04:14:20Z) - Approaching sales forecasting using recurrent neural networks and
transformers [57.43518732385863]
深層学習技術を用いて,日・店・店レベルでの顧客販売予測問題に対処する3つの方法を開発した。
実験結果から,データ前処理を最小限に抑えた単純なシーケンスアーキテクチャを用いて,優れた性能を実現することができることを示す。
提案した解は約0.54の RMSLE を達成し、Kaggle コンペティションで提案された問題に対する他のより具体的な解と競合する。
論文 参考訳(メタデータ) (2022-04-16T12:03:52Z) - Inducing Equilibria via Incentives: Simultaneous Design-and-Play Finds
Global Optima [114.31577038081026]
本稿では,デザイナーとエージェントの問題を同時に1ループで解くための効率的な手法を提案する。
設計者は平衡問題を何度も解決しないが、エージェントに対するインセンティブの全体的な影響を予測できる。
このアルゴリズムは,幅広い種類のゲームに対して,サブ線形速度で大域的最適値に収束することを示す。
論文 参考訳(メタデータ) (2021-10-04T06:53:59Z) - MUSBO: Model-based Uncertainty Regularized and Sample Efficient Batch
Optimization for Deployment Constrained Reinforcement Learning [108.79676336281211]
データ収集とオンライン学習のための新しいポリシーの継続的展開はコスト非効率か非現実的かのどちらかである。
モデルベース不確実性正規化とサンプル効率的なバッチ最適化という新しいアルゴリズム学習フレームワークを提案する。
本フレームワークは,各デプロイメントの新規で高品質なサンプルを発見し,効率的なデータ収集を実現する。
論文 参考訳(メタデータ) (2021-02-23T01:30:55Z) - Learning Augmented Index Policy for Optimal Service Placement at the
Network Edge [8.136957953239254]
私たちは、意思決定者がエッジでホストする$ N$サービスのいずれかを選択する必要があるネットワークエッジでサービス配置の問題を検討します。
私たちの目標は、顧客の平均サービス配信遅延を最小限に抑える適応アルゴリズムを設計することです。
論文 参考訳(メタデータ) (2021-01-10T23:54:59Z) - Outcome-Driven Dynamic Refugee Assignment with Allocation Balancing [0.0]
本研究では,難民や亡命希望者とホスト国内の地理的地域をマッチングする2つの動的割当てアルゴリズムを提案する。
1つ目は、最小記録のオンライン割当てアルゴリズムにより、難民の平均雇用水準(または、関心の測定結果)を最大化することである。
第2のアルゴリズムは、難民の成果を改善するという目標と、時間とともに均等に割り当てたいという願望のバランスをとる。
論文 参考訳(メタデータ) (2020-07-02T21:28:15Z) - Regularized Online Allocation Problems: Fairness and Beyond [7.433931244705934]
本稿では, 総資源消費に作用する非線形正規化器を含む変種である, 語彙化オンライン割当問題を紹介する。
この問題では、要求は時間とともに繰り返し届き、各要求に対して、意思決定者は報酬を生成しリソースを消費するアクションを取る必要があります。
目的は、資源制約を受ける加算可分な報酬と非分離可正則化器の値とを同時に最大化することである。
論文 参考訳(メタデータ) (2020-07-01T14:24:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。