論文の概要: Computing and Learning on Combinatorial Data
- arxiv url: http://arxiv.org/abs/2502.05063v1
- Date: Fri, 07 Feb 2025 16:35:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:55:34.523803
- Title: Computing and Learning on Combinatorial Data
- Title(参考訳): Combinatorial Dataのコンピューティングと学習
- Authors: Simon Zhang,
- Abstract要約: この論文は、コネクテッドデータによる学習と計算に焦点を当てている。
本研究では,データ間の接続性について検討し,学習性能の向上を図る。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The twenty-first century is a data-driven era where human activities and behavior, physical phenomena, scientific discoveries, technology advancements, and almost everything that happens in the world resulting in massive generation, collection, and utilization of data. Connectivity in data is a crucial property. A straightforward example is the World Wide Web, where every webpage is connected to other web pages through hyperlinks, providing a form of directed connectivity. Combinatorial data refers to combinations of data items based on certain connectivity rules. Other forms of combinatorial data include social networks, meshes, community clusters, set systems, and molecules. This Ph.D. dissertation focuses on learning and computing with combinatorial data. We study and examine topological and connectivity features within and across connected data to improve the performance of learning and achieve high algorithmic efficiency.
- Abstract(参考訳): 21世紀は、人間の活動や行動、物理現象、科学的な発見、技術の発展、そして膨大な量のデータの生成、収集、利用をもたらすほとんど全てのことが、データ駆動の時代である。
データの接続性は重要な特性である。
簡単な例はWorld Wide Webで、すべてのWebページがハイパーリンクを通じて他のWebページと接続され、接続の形式を提供する。
組合せデータは、特定の接続ルールに基づいたデータ項目の組み合わせを指す。
その他の組合せデータには、ソーシャルネットワーク、メッシュ、コミュニティクラスタ、セットシステム、分子などがある。
この博士論文は、組合せデータによる学習と計算に焦点を当てている。
本研究では,データ間のトポロジ的・接続性について検討し,学習性能の向上とアルゴリズム効率の向上を図る。
関連論文リスト
- Relational Deep Learning: Graph Representation Learning on Relational
Databases [69.7008152388055]
複数のテーブルにまたがって配置されたデータを学ぶために、エンドツーエンドの表現アプローチを導入する。
メッセージパッシンググラフニューラルネットワークは、自動的にグラフを学習して、すべてのデータ入力を活用する表現を抽出する。
論文 参考訳(メタデータ) (2023-12-07T18:51:41Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
我々は,グラフ機械学習のプライバシ保護手法の見直しに重点を置いている。
まずプライバシ保護グラフデータを生成する方法を検討する。
次に,プライバシ保護情報を送信する方法について述べる。
論文 参考訳(メタデータ) (2023-07-10T04:30:23Z) - Federated Learning over Harmonized Data Silos [0.7106986689736825]
Federated Learning(フェデレートラーニング)は、地理的に分散したデータサイロがデータを共有せずに共同で機械学習モデルを学習することを可能にする、分散機械学習アプローチである。
本稿では,データ調和とデータ計算の重要なステップを取り入れた,エンドツーエンドのフェデレーション学習統合システムのためのアーキテクチャビジョンを提案する。
論文 参考訳(メタデータ) (2023-05-15T19:55:51Z) - Personalized Decentralized Multi-Task Learning Over Dynamic
Communication Graphs [59.96266198512243]
本稿では,正と負の相関関係を持つタスクに対する分散・フェデレーション学習アルゴリズムを提案する。
本アルゴリズムでは,タスク間の相関関係を自動的に計算し,コミュニケーショングラフを動的に調整して相互に有益なタスクを接続し,互いに悪影響を及ぼす可能性のあるタスクを分離する。
合成ガウスデータセットと大規模セレブ属性(CelebA)データセットについて実験を行った。
論文 参考訳(メタデータ) (2022-12-21T18:58:24Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
様々なソースからのデータを組み込んだマルチモーダル機械学習が,ますます普及している研究分野となっている。
我々は、視覚、音声、テキスト、動きなど、各データフォーマットの共通点と特異点を分析する。
本稿では,表現学習と下流アプリケーションレベルの両方から,マルチモーダル学習に関する既存の文献を考察する。
論文 参考訳(メタデータ) (2022-10-05T13:14:57Z) - Learning to Match Jobs with Resumes from Sparse Interaction Data using
Multi-View Co-Teaching Network [83.64416937454801]
ジョブ列のインタラクションデータは疎結合でノイズが多く、ジョブ列のマッチングアルゴリズムのパフォーマンスに影響する。
求人情報マッチングのための疎相互作用データから,新しいマルチビュー協調学習ネットワークを提案する。
我々のモデルは求人マッチングの最先端手法より優れている。
論文 参考訳(メタデータ) (2020-09-25T03:09:54Z) - Coupling Learning of Complex Interactions [42.98602883069444]
本稿では,学習システムにおける結合関係の関与に着目し,結合学習の概念に焦点をあてる。
ケーススタディでは、リコメンデータシステムの結合の処理、結合クラスタリングへの結合、結合ドキュメントクラスタリング、結合レコメンデータアルゴリズム、グループに対する結合挙動解析などが行われている。
論文 参考訳(メタデータ) (2020-07-01T11:04:25Z) - Siamese Graph Neural Networks for Data Integration [11.41207739004894]
本稿では,リレーショナルデータベースなどの構造化データからエンティティをモデリングし,統合するための一般的なアプローチと,ニュース記事からの自由テキストなどの構造化されていない情報源を提案する。
我々のアプローチは、エンティティ間の関係を明示的にモデル化し、活用することにより、利用可能なすべての情報を使用し、できるだけ多くのコンテキストを保存するように設計されています。
我々は,ビジネスエンティティに関するデータ統合作業における手法の評価を行い,グラフベース表現を使用しない他のディープラーニングアプローチと同様に,標準的なルールベースシステムよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-17T21:51:55Z) - Distributed Learning in the Non-Convex World: From Batch to Streaming
Data, and Beyond [73.03743482037378]
分散学習は、多くの人々が想定する、大規模に接続された世界の重要な方向となっている。
本稿では、スケーラブルな分散処理とリアルタイムデータ計算の4つの重要な要素について論じる。
実践的な問題や今後の研究についても論じる。
論文 参考訳(メタデータ) (2020-01-14T14:11:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。