Chest X-ray Foundation Model with Global and Local Representations Integration
- URL: http://arxiv.org/abs/2502.05142v1
- Date: Fri, 07 Feb 2025 18:16:15 GMT
- Title: Chest X-ray Foundation Model with Global and Local Representations Integration
- Authors: Zefan Yang, Xuanang Xu, Jiajin Zhang, Ge Wang, Mannudeep K. Kalra, Pingkun Yan,
- Abstract summary: CheXFound is a vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks.
We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources.
Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels.
- Score: 13.736829173377355
- License:
- Abstract: Chest X-ray (CXR) is the most frequently ordered imaging test, supporting diverse clinical tasks from thoracic disease detection to postoperative monitoring. However, task-specific classification models are limited in scope, require costly labeled data, and lack generalizability to out-of-distribution datasets. To address these challenges, we introduce CheXFound, a self-supervised vision foundation model that learns robust CXR representations and generalizes effectively across a wide range of downstream tasks. We pretrain CheXFound on a curated CXR-1M dataset, comprising over one million unique CXRs from publicly available sources. We propose a Global and Local Representations Integration (GLoRI) module for downstream adaptations, by incorporating disease-specific local features with global image features for enhanced performance in multilabel classification. Our experimental results show that CheXFound outperforms state-of-the-art models in classifying 40 disease findings across different prevalence levels on the CXR-LT 24 dataset and exhibits superior label efficiency on downstream tasks with limited training data. Additionally, CheXFound achieved significant improvements on new tasks with out-of-distribution datasets, including opportunistic cardiovascular disease risk estimation and mortality prediction. These results highlight CheXFound's strong generalization capabilities, enabling diverse adaptations with improved label efficiency. The project source code is publicly available at https://github.com/RPIDIAL/CheXFound.
Related papers
- LTCXNet: Advancing Chest X-Ray Analysis with Solutions for Long-Tailed Multi-Label Classification and Fairness Challenges [4.351007758390175]
Pruned MIMIC-CXR-LT dataset is designed to represent a long-tailed and multi-label data scenario.
We introduce LTCXNet, a novel framework that integrates the ConvNeXt model, ML-Decoder, and strategic data augmentation.
arXiv Detail & Related papers (2024-11-16T08:59:20Z) - A foundation model for generalizable disease diagnosis in chest X-ray images [40.9095393430871]
We introduce CXRBase, a foundational model designed to learn versatile representations from unlabelled CXR images.
CXRBase is trained on a substantial dataset of 1.04 million unlabelled CXR images.
It is fine-tuned with labeled data to enhance its performance in disease detection.
arXiv Detail & Related papers (2024-10-11T14:41:27Z) - MLVICX: Multi-Level Variance-Covariance Exploration for Chest X-ray Self-Supervised Representation Learning [6.4136876268620115]
MLVICX is an approach to capture rich representations in the form of embeddings from chest X-ray images.
We demonstrate the performance of MLVICX in advancing self-supervised chest X-ray representation learning.
arXiv Detail & Related papers (2024-03-18T06:19:37Z) - UniChest: Conquer-and-Divide Pre-training for Multi-Source Chest X-Ray Classification [36.94690613164942]
UniChest is a Conquer-and-Divide pre-training framework, aiming to make full use of the collaboration benefit of multiple sources of CXRs.
We conduct thorough experiments on many benchmarks, e.g., ChestX-ray14, CheXpert, Vindr-CXR, Shenzhen, Open-I and SIIM-ACR Pneumothorax.
arXiv Detail & Related papers (2023-12-18T09:16:48Z) - Revisiting Computer-Aided Tuberculosis Diagnosis [56.80999479735375]
Tuberculosis (TB) is a major global health threat, causing millions of deaths annually.
Computer-aided tuberculosis diagnosis (CTD) using deep learning has shown promise, but progress is hindered by limited training data.
We establish a large-scale dataset, namely the Tuberculosis X-ray (TBX11K) dataset, which contains 11,200 chest X-ray (CXR) images with corresponding bounding box annotations for TB areas.
This dataset enables the training of sophisticated detectors for high-quality CTD.
arXiv Detail & Related papers (2023-07-06T08:27:48Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Contrastive Attention for Automatic Chest X-ray Report Generation [124.60087367316531]
In most cases, the normal regions dominate the entire chest X-ray image, and the corresponding descriptions of these normal regions dominate the final report.
We propose Contrastive Attention (CA) model, which compares the current input image with normal images to distill the contrastive information.
We achieve the state-of-the-art results on the two public datasets.
arXiv Detail & Related papers (2021-06-13T11:20:31Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - Learning Invariant Feature Representation to Improve Generalization
across Chest X-ray Datasets [55.06983249986729]
We show that a deep learning model performing well when tested on the same dataset as training data starts to perform poorly when it is tested on a dataset from a different source.
By employing an adversarial training strategy, we show that a network can be forced to learn a source-invariant representation.
arXiv Detail & Related papers (2020-08-04T07:41:15Z) - BS-Net: learning COVID-19 pneumonia severity on a large Chest X-Ray
dataset [6.5800499500032705]
We design an end-to-end deep learning architecture for predicting, on Chest X-rays images (CXR), a multi-regional score conveying the degree of lung compromise in COVID-19 patients.
We exploit a clinical dataset of almost 5,000 CXR annotated images collected in the same hospital.
Our solution outperforms single human annotators in rating accuracy and consistency.
arXiv Detail & Related papers (2020-06-08T13:55:58Z) - Deep Mining External Imperfect Data for Chest X-ray Disease Screening [57.40329813850719]
We argue that incorporating an external CXR dataset leads to imperfect training data, which raises the challenges.
We formulate the multi-label disease classification problem as weighted independent binary tasks according to the categories.
Our framework simultaneously models and tackles the domain and label discrepancies, enabling superior knowledge mining ability.
arXiv Detail & Related papers (2020-06-06T06:48:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.