論文の概要: LP-DETR: Layer-wise Progressive Relations for Object Detection
- arxiv url: http://arxiv.org/abs/2502.05147v1
- Date: Fri, 07 Feb 2025 18:25:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-10 14:58:03.625102
- Title: LP-DETR: Layer-wise Progressive Relations for Object Detection
- Title(参考訳): LP-DETR:オブジェクト検出のためのレイヤワイドプログレッシブリレーション
- Authors: Zhengjian Kang, Ye Zhang, Xiaoyu Deng, Xintao Li, Yongzhe Zhang,
- Abstract要約: LP-DETR(Layer-wise Progressive DETR)は,DTRに基づくオブジェクト検出を多スケール関係モデリングにより拡張する手法である。
本稿では,オブジェクトクエリ間の学習可能な空間関係を,関係認識型自己認識機構を通じて導入する。
- 参考スコア(独自算出の注目度): 4.632366780742503
- License:
- Abstract: This paper presents LP-DETR (Layer-wise Progressive DETR), a novel approach that enhances DETR-based object detection through multi-scale relation modeling. Our method introduces learnable spatial relationships between object queries through a relation-aware self-attention mechanism, which adaptively learns to balance different scales of relations (local, medium and global) across decoder layers. This progressive design enables the model to effectively capture evolving spatial dependencies throughout the detection pipeline. Extensive experiments on COCO 2017 dataset demonstrate that our method improves both convergence speed and detection accuracy compared to standard self-attention module. The proposed method achieves competitive results, reaching 52.3\% AP with 12 epochs and 52.5\% AP with 24 epochs using ResNet-50 backbone, and further improving to 58.0\% AP with Swin-L backbone. Furthermore, our analysis reveals an interesting pattern: the model naturally learns to prioritize local spatial relations in early decoder layers while gradually shifting attention to broader contexts in deeper layers, providing valuable insights for future research in object detection.
- Abstract(参考訳): 本稿では, LP-DETR(Layer-wise Progressive DETR)を提案する。
提案手法では,デコーダ層間の関係性(ローカル,中,グローバル)の異なるスケールのバランスを適応的に学習する,関係認識型自己アテンション機構を用いて,オブジェクトクエリ間の学習可能な空間関係を導入する。
このプログレッシブ設計により、モデルは検出パイプライン全体を通して進化する空間的依存関係を効果的にキャプチャできる。
COCO 2017データセットの大規模な実験により,本手法は標準自己注意モジュールと比較して収束速度と検出精度の両方を向上することが示された。
提案手法は,12エポック,52.5エポック,24エポックにResNet-50バックボーンを用いて52.3エポックに到達し,さらにSwin-Lバックボーンで58.0エポックに改善した。
さらに,本モデルでは,初期デコーダ層における局所的空間関係の優先順位を自然に学習すると同時に,より深い層におけるより広いコンテキストに徐々に注目を移し,オブジェクト検出における今後の研究に有用な洞察を与える。
関連論文リスト
- A Plug-and-Play Method for Rare Human-Object Interactions Detection by Bridging Domain Gap [50.079224604394]
textbfContext-textbfEnhanced textbfFeature textbfAment (CEFA) と呼ばれる新しいモデルに依存しないフレームワークを提案する。
CEFAは機能アライメントモジュールとコンテキスト拡張モジュールで構成される。
本手法は, 稀なカテゴリにおけるHOIモデルの検出性能を向上させるために, プラグアンドプレイモジュールとして機能する。
論文 参考訳(メタデータ) (2024-07-31T08:42:48Z) - Relation DETR: Exploring Explicit Position Relation Prior for Object Detection [26.03892270020559]
本稿では,DETR(Detection TRansformer)の収束性と性能を向上させる手法を提案する。
我々の手法であるRelation-DETRは、プログレッシブ・アテンション・リファインメントのための位置関係埋め込みを構築するエンコーダを導入している。
汎用データセットとタスク固有のデータセットの両方の実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-07-16T13:17:07Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Staged Depthwise Correlation and Feature Fusion for Siamese Object
Tracking [0.6827423171182154]
視覚的トラッキングのための特徴抽出をさらに最適化するために,DCFFNet という新たな段階的深度相関と特徴融合ネットワークを提案する。
シアムネットワークアーキテクチャに基づいてディープトラッカーを構築しており、複数の大規模データセットでゼロからトレーニングされたオフラインです。
OTB100,VOT2018,LaSOTなど,一般的なベンチマークにトラッカーを実装した。
論文 参考訳(メタデータ) (2023-10-15T06:04:42Z) - Spatio-Temporal Relation Learning for Video Anomaly Detection [35.59510027883497]
異常識別は、オブジェクトとシーンの関係に大きく依存する。
本稿では,ビデオ異常検出タスクに対処するための空間時間関係学習フレームワークを提案する。
3つの公開データセットで実験を行い、最先端手法よりも優れた性能を示し、本手法の有効性を実証した。
論文 参考訳(メタデータ) (2022-09-27T02:19:31Z) - Ret3D: Rethinking Object Relations for Efficient 3D Object Detection in
Driving Scenes [82.4186966781934]
Ret3Dと呼ばれるシンプルで効率的で効果的な2段階検出器を導入する。
Ret3Dの中核は、新しいフレーム内およびフレーム間関係モジュールの利用である。
無視できる余分なオーバーヘッドにより、Ret3Dは最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-08-18T03:48:58Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z) - Recurrent Glimpse-based Decoder for Detection with Transformer [85.64521612986456]
本稿では,Recurrent Glimpse-based deoder (REGO)について紹介する。
特に、REGOは多段階のリカレント処理構造を用いて、DETRの注目が徐々に前景オブジェクトに焦点を合わせるのを助ける。
REGOは、異なるDETR検出器の性能を最大7%向上させる。
論文 参考訳(メタデータ) (2021-12-09T00:29:19Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。