NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities
- URL: http://arxiv.org/abs/2408.01499v1
- Date: Fri, 2 Aug 2024 18:01:09 GMT
- Title: NeuralFactors: A Novel Factor Learning Approach to Generative Modeling of Equities
- Authors: Achintya Gopal,
- Abstract summary: We introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns.
We show that this model outperforms prior approaches in terms of log-likelihood performance and computational efficiency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The use of machine learning for statistical modeling (and thus, generative modeling) has grown in popularity with the proliferation of time series models, text-to-image models, and especially large language models. Fundamentally, the goal of classical factor modeling is statistical modeling of stock returns, and in this work, we explore using deep generative modeling to enhance classical factor models. Prior work has explored the use of deep generative models in order to model hundreds of stocks, leading to accurate risk forecasting and alpha portfolio construction; however, that specific model does not allow for easy factor modeling interpretation in that the factor exposures cannot be deduced. In this work, we introduce NeuralFactors, a novel machine-learning based approach to factor analysis where a neural network outputs factor exposures and factor returns, trained using the same methodology as variational autoencoders. We show that this model outperforms prior approaches both in terms of log-likelihood performance and computational efficiency. Further, we show that this method is competitive to prior work in generating realistic synthetic data, covariance estimation, risk analysis (e.g., value at risk, or VaR, of portfolios), and portfolio optimization. Finally, due to the connection to classical factor analysis, we analyze how the factors our model learns cluster together and show that the factor exposures could be used for embedding stocks.
Related papers
- Embedding-based statistical inference on generative models [10.948308354932639]
We extend results related to embedding-based representations of generative models to classical statistical inference settings.
We demonstrate that using the perspective space as the basis of a notion of "similar" is effective for multiple model-level inference tasks.
arXiv Detail & Related papers (2024-10-01T22:28:39Z) - Generative Machine Learning for Multivariate Equity Returns [0.0]
We study the efficacy of conditional importance weighted autoencoders and conditional normalizing flows for the task of modeling the returns of equities.
The main problem we work to address is modeling the joint distribution of all the members of the S&P 500, or, in other words, learning a 500-dimensional joint distribution.
We show that this generative model has a broad range of applications in finance, including generating realistic synthetic data, volatility and correlation estimation, risk analysis, and portfolio optimization.
arXiv Detail & Related papers (2023-11-21T18:41:48Z) - Model Provenance via Model DNA [23.885185988451667]
We introduce a novel concept of Model DNA which represents the unique characteristics of a machine learning model.
We develop an efficient framework for model provenance identification, which enables us to identify whether a source model is a pre-training model of a target model.
arXiv Detail & Related papers (2023-08-04T03:46:41Z) - How robust are pre-trained models to distribution shift? [82.08946007821184]
We show how spurious correlations affect the performance of popular self-supervised learning (SSL) and auto-encoder based models (AE)
We develop a novel evaluation scheme with the linear head trained on out-of-distribution (OOD) data, to isolate the performance of the pre-trained models from a potential bias of the linear head used for evaluation.
arXiv Detail & Related papers (2022-06-17T16:18:28Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Firearm Detection via Convolutional Neural Networks: Comparing a
Semantic Segmentation Model Against End-to-End Solutions [68.8204255655161]
Threat detection of weapons and aggressive behavior from live video can be used for rapid detection and prevention of potentially deadly incidents.
One way for achieving this is through the use of artificial intelligence and, in particular, machine learning for image analysis.
We compare a traditional monolithic end-to-end deep learning model and a previously proposed model based on an ensemble of simpler neural networks detecting fire-weapons via semantic segmentation.
arXiv Detail & Related papers (2020-12-17T15:19:29Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
We develop a model that retains the intrinsic multidimensional structure of the dataset.
To estimate the model parameters, an Alternating Least Squares algorithm is developed.
The proposed model is able to outperform benchmark models present in the forecasting literature.
arXiv Detail & Related papers (2020-02-11T11:57:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.