L2GNet: Optimal Local-to-Global Representation of Anatomical Structures for Generalized Medical Image Segmentation
- URL: http://arxiv.org/abs/2502.05229v1
- Date: Thu, 06 Feb 2025 14:14:44 GMT
- Title: L2GNet: Optimal Local-to-Global Representation of Anatomical Structures for Generalized Medical Image Segmentation
- Authors: Vandan Gorade, Sparsh Mittal, Neethi Dasu, Rekha Singhal, KC Santosh, Debesh Jha,
- Abstract summary: We propose L2GNet, which learns global dependencies by relating discrete codes obtained from DLS using optimal transport and aligning codes on a trainable reference.
Experiments on multi-organ segmentation and cardiac datasets demonstrate L2GNet's superiority over state-of-the-art methods.
- Score: 7.168855528006015
- License:
- Abstract: Continuous Latent Space (CLS) and Discrete Latent Space (DLS) models, like AttnUNet and VQUNet, have excelled in medical image segmentation. In contrast, Synergistic Continuous and Discrete Latent Space (CDLS) models show promise in handling fine and coarse-grained information. However, they struggle with modeling long-range dependencies. CLS or CDLS-based models, such as TransUNet or SynergyNet are adept at capturing long-range dependencies. Since they rely heavily on feature pooling or aggregation using self-attention, they may capture dependencies among redundant regions. This hinders comprehension of anatomical structure content, poses challenges in modeling intra-class and inter-class dependencies, increases false negatives and compromises generalization. Addressing these issues, we propose L2GNet, which learns global dependencies by relating discrete codes obtained from DLS using optimal transport and aligning codes on a trainable reference. L2GNet achieves discriminative on-the-fly representation learning without an additional weight matrix in self-attention models, making it computationally efficient for medical applications. Extensive experiments on multi-organ segmentation and cardiac datasets demonstrate L2GNet's superiority over state-of-the-art methods, including the CDLS method SynergyNet, offering an novel approach to enhance deep learning models' performance in medical image analysis.
Related papers
- A Study on the Performance of U-Net Modifications in Retroperitoneal Tumor Segmentation [45.39707664801522]
The retroperitoneum hosts a variety of tumors, including rare benign and malignant types, which pose diagnostic and treatment challenges.
Estimating tumor volume is difficult due to their irregular shapes, and manual segmentation is time-consuming.
This study evaluates U-Net enhancements, including CNN, ViT, Mamba, and xLSTM, on a new in-house CT dataset and a public organ segmentation dataset.
arXiv Detail & Related papers (2025-02-01T04:25:28Z) - Global Semantic-Guided Sub-image Feature Weight Allocation in High-Resolution Large Vision-Language Models [50.98559225639266]
Sub-images with higher semantic relevance to the entire image encapsulate richer visual information for preserving the model's visual understanding ability.
Global Semantic-guided Weight Allocator (GSWA) module allocates weights to sub-images based on their relative information density.
SleighVL, a lightweight yet high-performing model, outperforms models with comparable parameters and remains competitive with larger models.
arXiv Detail & Related papers (2025-01-24T06:42:06Z) - LKM-UNet: Large Kernel Vision Mamba UNet for Medical Image Segmentation [9.862277278217045]
In this paper, we introduce a Large Kernel Vision Mamba U-shape Network, or LKM-UNet, for medical image segmentation.
A distinguishing feature of our LKM-UNet is its utilization of large Mamba kernels, excelling in locally spatial modeling compared to small kernel-based CNNs and Transformers.
Comprehensive experiments demonstrate the feasibility and the effectiveness of using large-size Mamba kernels to achieve large receptive fields.
arXiv Detail & Related papers (2024-03-12T05:34:51Z) - Latent Semantic Consensus For Deterministic Geometric Model Fitting [109.44565542031384]
We propose an effective method called Latent Semantic Consensus (LSC)
LSC formulates the model fitting problem into two latent semantic spaces based on data points and model hypotheses.
LSC is able to provide consistent and reliable solutions within only a few milliseconds for general multi-structural model fitting.
arXiv Detail & Related papers (2024-03-11T05:35:38Z) - Masked LoGoNet: Fast and Accurate 3D Image Analysis for Medical Domain [48.440691680864745]
We introduce a new neural network architecture, termed LoGoNet, with a tailored self-supervised learning (SSL) method.
LoGoNet integrates a novel feature extractor within a U-shaped architecture, leveraging Large Kernel Attention (LKA) and a dual encoding strategy.
We propose a novel SSL method tailored for 3D images to compensate for the lack of large labeled datasets.
arXiv Detail & Related papers (2024-02-09T05:06:58Z) - PMFSNet: Polarized Multi-scale Feature Self-attention Network For
Lightweight Medical Image Segmentation [6.134314911212846]
Current state-of-the-art medical image segmentation methods prioritize accuracy but often at the expense of increased computational demands and larger model sizes.
We propose PMFSNet, a novel medical imaging segmentation model that balances global local feature processing while avoiding computational redundancy.
It incorporates a plug-and-play PMFS block, a multi-scale feature enhancement module based on attention mechanisms, to capture long-term dependencies.
arXiv Detail & Related papers (2024-01-15T10:26:47Z) - SynergyNet: Bridging the Gap between Discrete and Continuous
Representations for Precise Medical Image Segmentation [4.562266115935329]
We propose SynergyNet, a novel bottleneck architecture designed to enhance existing encoder-decoder segmentation frameworks.
Our experiment on multi-organ segmentation and cardiac datasets demonstrates that SynergyNet outperforms other state of the art methods.
Our innovative approach paves the way for enhancing the overall performance and capabilities of deep learning models in the critical domain of medical image analysis.
arXiv Detail & Related papers (2023-10-26T20:13:44Z) - Lesion-aware Dynamic Kernel for Polyp Segmentation [49.63274623103663]
We propose a lesion-aware dynamic network (LDNet) for polyp segmentation.
It is a traditional u-shape encoder-decoder structure incorporated with a dynamic kernel generation and updating scheme.
This simple but effective scheme endows our model with powerful segmentation performance and generalization capability.
arXiv Detail & Related papers (2023-01-12T09:53:57Z) - MALUNet: A Multi-Attention and Light-weight UNet for Skin Lesion
Segmentation [13.456935850832565]
We propose a light-weight model to achieve competitive performances for skin lesion segmentation at the lowest cost of parameters and computational complexity.
We combine four modules with our U-shape architecture and obtain a light-weight medical image segmentation model dubbed as MALUNet.
Compared with UNet, our model improves the mIoU and DSC metrics by 2.39% and 1.49%, respectively, with a 44x and 166x reduction in the number of parameters and computational complexity.
arXiv Detail & Related papers (2022-11-03T13:19:22Z) - Spatial Dependency Networks: Neural Layers for Improved Generative Image
Modeling [79.15521784128102]
We introduce a novel neural network for building image generators (decoders) and apply it to variational autoencoders (VAEs)
In our spatial dependency networks (SDNs), feature maps at each level of a deep neural net are computed in a spatially coherent way.
We show that augmenting the decoder of a hierarchical VAE by spatial dependency layers considerably improves density estimation.
arXiv Detail & Related papers (2021-03-16T07:01:08Z) - Pairwise Relation Learning for Semi-supervised Gland Segmentation [90.45303394358493]
We propose a pairwise relation-based semi-supervised (PRS2) model for gland segmentation on histology images.
This model consists of a segmentation network (S-Net) and a pairwise relation network (PR-Net)
We evaluate our model against five recent methods on the GlaS dataset and three recent methods on the CRAG dataset.
arXiv Detail & Related papers (2020-08-06T15:02:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.