Principles and Components of Federated Learning Architectures
- URL: http://arxiv.org/abs/2502.05273v1
- Date: Fri, 07 Feb 2025 19:09:03 GMT
- Title: Principles and Components of Federated Learning Architectures
- Authors: Sarwar Saif, MD Abdullah Al Nasim, Parag Biswas, Abdur Rashid, MD Mahim Anjum Haque, Md. Zihad Bin Jahangir,
- Abstract summary: Federated learning, also known as FL, is a machine learning framework in which a significant amount of clients collaborate to collaboratively train a model.
There are advantages in terms of privacy, security, regulations, and economy with this decentralized approach to model training.
- Score: 0.8869563348631716
- License:
- Abstract: Federated learning, also known as FL, is a machine learning framework in which a significant amount of clients (such as mobile devices or whole enterprises) collaborate to collaboratively train a model while keeping decentralized training data, all overseen by a central server (such as a service provider). There are advantages in terms of privacy, security, regulations, and economy with this decentralized approach to model training. FL is not impervious to the flaws that plague conventional machine learning models, despite its seeming promise. This study offers a thorough analysis of the fundamental ideas and elements of federated learning architectures, emphasizing five important areas: communication architectures, machine learning models, data partitioning, privacy methods, and system heterogeneity. We additionally address the difficulties and potential paths for future study in the area. Furthermore, based on a comprehensive review of the literature, we present a collection of architectural patterns for federated learning systems. This analysis will help to understand the basic of Federated learning, the primary components of FL, and also about several architectural details.
Related papers
- A Comprehensive Study on Model Initialization Techniques Ensuring
Efficient Federated Learning [0.0]
Federated learning(FL) has emerged as a promising paradigm for training machine learning models in a distributed and privacy-preserving manner.
The choice of methods used for models plays a crucial role in the performance, convergence speed, communication efficiency, privacy guarantees of federated learning systems.
Our research meticulously compares, categorizes, and delineates the merits and demerits of each technique, examining their applicability across diverse FL scenarios.
arXiv Detail & Related papers (2023-10-31T23:26:58Z) - Handling Data Heterogeneity via Architectural Design for Federated
Visual Recognition [16.50490537786593]
We study 19 visual recognition models from five different architectural families on four challenging FL datasets.
Our findings emphasize the importance of architectural design for computer vision tasks in practical scenarios.
arXiv Detail & Related papers (2023-10-23T17:59:16Z) - Deep Equilibrium Models Meet Federated Learning [71.57324258813675]
This study explores the problem of Federated Learning (FL) by utilizing the Deep Equilibrium (DEQ) models instead of conventional deep learning networks.
We claim that incorporating DEQ models into the federated learning framework naturally addresses several open problems in FL.
To the best of our knowledge, this study is the first to establish a connection between DEQ models and federated learning.
arXiv Detail & Related papers (2023-05-29T22:51:40Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
In this tutorial, we present a comprehensive review of FL, meta learning, and federated meta learning (FedMeta)
Unlike other tutorial papers, our objective is to explore how FL, meta learning, and FedMeta methodologies can be designed, optimized, and evolved, and their applications over wireless networks.
arXiv Detail & Related papers (2022-10-24T10:59:29Z) - FLRA: A Reference Architecture for Federated Learning Systems [8.180947044673639]
Federated learning is an emerging machine learning paradigm that enables multiple devices to train models locally and formulate a global model, without sharing the clients' local data.
We propose FLRA, a reference architecture for federated learning systems, which provides a template design for federated learning-based solutions.
arXiv Detail & Related papers (2021-06-22T06:59:19Z) - From Distributed Machine Learning to Federated Learning: A Survey [49.7569746460225]
Federated learning emerges as an efficient approach to exploit distributed data and computing resources.
We propose a functional architecture of federated learning systems and a taxonomy of related techniques.
We present the distributed training, data communication, and security of FL systems.
arXiv Detail & Related papers (2021-04-29T14:15:11Z) - Federated Learning: A Signal Processing Perspective [144.63726413692876]
Federated learning is an emerging machine learning paradigm for training models across multiple edge devices holding local datasets, without explicitly exchanging the data.
This article provides a unified systematic framework for federated learning in a manner that encapsulates and highlights the main challenges that are natural to treat using signal processing tools.
arXiv Detail & Related papers (2021-03-31T15:14:39Z) - Architectural Patterns for the Design of Federated Learning Systems [12.330671239159102]
Federated learning has received fast-growing interests from academia and industry to tackle the challenges of data hungriness and privacy in machine learning.
This paper presents a collection of architectural patterns to deal with the design challenges of federated learning systems.
arXiv Detail & Related papers (2021-01-07T05:11:09Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
We show the hierarchical learning structure of the proposed edge-assisted democratized learning mechanism, namely Edge-DemLearn.
We also validate Edge-DemLearn as a flexible model training mechanism to build a distributed control and aggregation methodology in regions.
arXiv Detail & Related papers (2020-12-01T11:46:03Z) - IBM Federated Learning: an Enterprise Framework White Paper V0.1 [28.21579297214125]
Federated Learning (FL) is an approach to conduct machine learning without centralizing training data in a single place.
The framework applies to both Deep Neural Networks as well as traditional'' approaches for the most common machine learning libraries.
arXiv Detail & Related papers (2020-07-22T05:32:00Z) - Federated Residual Learning [53.77128418049985]
We study a new form of federated learning where the clients train personalized local models and make predictions jointly with the server-side shared model.
Using this new federated learning framework, the complexity of the central shared model can be minimized while still gaining all the performance benefits that joint training provides.
arXiv Detail & Related papers (2020-03-28T19:55:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.