Interpretable Failure Detection with Human-Level Concepts
- URL: http://arxiv.org/abs/2502.05275v1
- Date: Fri, 07 Feb 2025 19:19:40 GMT
- Title: Interpretable Failure Detection with Human-Level Concepts
- Authors: Kien X. Nguyen, Tang Li, Xi Peng,
- Abstract summary: This research introduces an innovative strategy, leveraging human-level concepts for a dual purpose: to reliably detect when a model fails and to transparently interpret why.
We present a simple yet highly effective approach based on the ordinal ranking of concept activation to the input image.
- Score: 9.086637005449672
- License:
- Abstract: Reliable failure detection holds paramount importance in safety-critical applications. Yet, neural networks are known to produce overconfident predictions for misclassified samples. As a result, it remains a problematic matter as existing confidence score functions rely on category-level signals, the logits, to detect failures. This research introduces an innovative strategy, leveraging human-level concepts for a dual purpose: to reliably detect when a model fails and to transparently interpret why. By integrating a nuanced array of signals for each category, our method enables a finer-grained assessment of the model's confidence. We present a simple yet highly effective approach based on the ordinal ranking of concept activation to the input image. Without bells and whistles, our method significantly reduce the false positive rate across diverse real-world image classification benchmarks, specifically by 3.7% on ImageNet and 9% on EuroSAT.
Related papers
- Revisiting Confidence Estimation: Towards Reliable Failure Prediction [53.79160907725975]
We find a general, widely existing but actually-neglected phenomenon that most confidence estimation methods are harmful for detecting misclassification errors.
We propose to enlarge the confidence gap by finding flat minima, which yields state-of-the-art failure prediction performance.
arXiv Detail & Related papers (2024-03-05T11:44:14Z) - Tailoring Adversarial Attacks on Deep Neural Networks for Targeted Class Manipulation Using DeepFool Algorithm [6.515472477685614]
The susceptibility of deep neural networks (DNNs) to adversarial attacks undermines their reliability across numerous applications.
We introduce the Enhanced Targeted DeepFool (ET DeepFool) algorithm, an evolution of DeepFool.
Our empirical investigations demonstrate the superiority of this refined approach in maintaining the integrity of images.
arXiv Detail & Related papers (2023-10-18T18:50:39Z) - Enhancing Infrared Small Target Detection Robustness with Bi-Level
Adversarial Framework [61.34862133870934]
We propose a bi-level adversarial framework to promote the robustness of detection in the presence of distinct corruptions.
Our scheme remarkably improves 21.96% IOU across a wide array of corruptions and notably promotes 4.97% IOU on the general benchmark.
arXiv Detail & Related papers (2023-09-03T06:35:07Z) - Boosting Adversarial Robustness using Feature Level Stochastic Smoothing [46.86097477465267]
adversarial defenses have led to a significant improvement in the robustness of Deep Neural Networks.
In this work, we propose a generic method for introducingity in the network predictions.
We also utilize this for smoothing decision rejecting low confidence predictions.
arXiv Detail & Related papers (2023-06-10T15:11:24Z) - A Call to Reflect on Evaluation Practices for Failure Detection in Image
Classification [0.491574468325115]
We present a large-scale empirical study for the first time enabling benchmarking confidence scoring functions.
The revelation of a simple softmax response baseline as the overall best performing method underlines the drastic shortcomings of current evaluation.
arXiv Detail & Related papers (2022-11-28T12:25:27Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Uncertainty-Aware Deep Calibrated Salient Object Detection [74.58153220370527]
Existing deep neural network based salient object detection (SOD) methods mainly focus on pursuing high network accuracy.
These methods overlook the gap between network accuracy and prediction confidence, known as the confidence uncalibration problem.
We introduce an uncertaintyaware deep SOD network, and propose two strategies to prevent deep SOD networks from being overconfident.
arXiv Detail & Related papers (2020-12-10T23:28:36Z) - Gradients as a Measure of Uncertainty in Neural Networks [16.80077149399317]
We propose to utilize backpropagated gradients to quantify the uncertainty of trained models.
We show that our gradient-based method outperforms state-of-the-art methods by up to 4.8% of AUROC score in out-of-distribution detection.
arXiv Detail & Related papers (2020-08-18T16:58:46Z) - Binary Classification from Positive Data with Skewed Confidence [85.18941440826309]
Positive-confidence (Pconf) classification is a promising weakly-supervised learning method.
In practice, the confidence may be skewed by bias arising in an annotation process.
We introduce the parameterized model of the skewed confidence, and propose the method for selecting the hyper parameter.
arXiv Detail & Related papers (2020-01-29T00:04:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.