論文の概要: AI/ML-Based Automatic Modulation Recognition: Recent Trends and Future Possibilities
- arxiv url: http://arxiv.org/abs/2502.05315v2
- Date: Tue, 18 Feb 2025 03:43:28 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-19 14:01:36.603262
- Title: AI/ML-Based Automatic Modulation Recognition: Recent Trends and Future Possibilities
- Title(参考訳): AI/MLに基づく自動変調認識:最近の動向と将来の可能性
- Authors: Elaheh Jafarigol, Behnoud Alaghband, Azadeh Gilanpour, Saeid Hosseinipoor, Mirhamed Mirmozafari,
- Abstract要約: 本稿では、RF変調方式を分類するために、文献に提案されている高性能自動変調認識(AMR)モデルについて概説する。
我々はこれらのモデルを再現し、その性能を信号対雑音比の精度で比較した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: We present a review of high-performance automatic modulation recognition (AMR) models proposed in the literature to classify various Radio Frequency (RF) modulation schemes. We replicated these models and compared their performance in terms of accuracy across a range of signal-to-noise ratios. To ensure a fair comparison, we used the same dataset (RadioML-2016A), the same hardware, and a consistent definition of test accuracy as the evaluation metric, thereby providing a benchmark for future AMR studies. The hyperparameters were selected based on the authors' suggestions in the associated references to achieve results as close as possible to the originals. The replicated models are publicly accessible for further analysis of AMR models. We also present the test accuracies of the selected models versus their number of parameters, indicating their complexities. Building on this comparative analysis, we identify strategies to enhance these models' performance. Finally, we present potential opportunities for improvement, whether through novel architectures, data processing techniques, or training strategies, to further advance the capabilities of AMR models.
- Abstract(参考訳): 本稿では、RF変調方式を分類するために、文献に提案されている高性能自動変調認識(AMR)モデルについて概説する。
我々はこれらのモデルを再現し、その性能を信号対雑音比の精度で比較した。
公平な比較をするために,同じデータセット(RadioML-2016A),同じハードウェア,一貫したテスト精度の定義を評価基準として使用し,将来のAMR研究のためのベンチマークを提供した。
ハイパーパラメータは、原典にできるだけ近い結果を得るために、関連する参照における著者の提案に基づいて選択された。
複製されたモデルは、AMRモデルのさらなる分析のために一般にアクセス可能である。
また,選択したモデルの精度とパラメータ数を比較し,それらの複雑さを示す。
この比較分析に基づいて、これらのモデルの性能を高めるための戦略を特定する。
最後に,新しいアーキテクチャ,データ処理技術,トレーニング戦略を通じて,AMRモデルの能力をさらに向上する可能性を示す。
関連論文リスト
- Supervised Score-Based Modeling by Gradient Boosting [49.556736252628745]
本稿では,スコアマッチングを組み合わせた勾配向上アルゴリズムとして,SSM(Supervised Score-based Model)を提案する。
推測時間と予測精度のバランスをとるため,SSMの学習とサンプリングに関する理論的解析を行った。
我々のモデルは、精度と推測時間の両方で既存のモデルより優れています。
論文 参考訳(メタデータ) (2024-11-02T07:06:53Z) - Introducing Flexible Monotone Multiple Choice Item Response Theory Models and Bit Scales [0.0]
本稿では,複数選択データに対する新しいモデルであるモノトーン多重選択(MMC)モデルを提案する。
MMCモデルは、適合性の観点から、従来の名目応答IRTモデルよりも優れていることを実証的に実証する。
論文 参考訳(メタデータ) (2024-10-02T12:33:16Z) - Beyond Benchmarks: Evaluating Embedding Model Similarity for Retrieval Augmented Generation Systems [0.9976432338233169]
RAGシステムのコンテキストにおける埋め込みモデルの類似性を評価する。
5つのデータセットで、プロプライエタリなモデルを含む埋め込みモデルのさまざまなファミリを比較します。
プロプライエタリなモデルに対するオープンソース代替案を特定でき、MistralはOpenAIモデルに最もよく似ている。
論文 参考訳(メタデータ) (2024-07-11T08:24:16Z) - QualEval: Qualitative Evaluation for Model Improvement [82.73561470966658]
モデル改善のための手段として,自動定性評価による定量的スカラー指標を付加するQualEvalを提案する。
QualEvalは強力なLCM推論器と新しいフレキシブルリニアプログラミングソルバを使用して、人間の読みやすい洞察を生成する。
例えば、その洞察を活用することで、Llama 2モデルの絶対性能が最大15%向上することを示す。
論文 参考訳(メタデータ) (2023-11-06T00:21:44Z) - Deep Learning Models for Knowledge Tracing: Review and Empirical
Evaluation [2.423547527175807]
我々は,オープンで広く利用されているデータセットを用いた深層学習知識追跡(DLKT)モデルをレビューし,評価する。
評価されたDLKTモデルは、以前報告した結果の再現性と評価のために再実装されている。
論文 参考訳(メタデータ) (2021-12-30T14:19:27Z) - An Efficient Deep Learning Model for Automatic Modulation Recognition
Based on Parameter Estimation and Transformation [3.3941243094128035]
本稿では,位相パラメータ推定と変換に基づく効率的なDL-AMRモデルを提案する。
我々のモデルは、類似の認識精度を持つベンチマークモデルよりも、トレーニング時間とテスト時間で競争力がある。
論文 参考訳(メタデータ) (2021-10-11T03:28:28Z) - Comparing Test Sets with Item Response Theory [53.755064720563]
我々は,18の事前学習トランスフォーマーモデルから予測した29のデータセットを個別のテスト例で評価した。
Quoref、HellaSwag、MC-TACOは最先端のモデルを区別するのに最適である。
また、QAMRやSQuAD2.0のようなQAデータセットに使用されるスパン選択タスク形式は、強いモデルと弱いモデルとの差別化に有効である。
論文 参考訳(メタデータ) (2021-06-01T22:33:53Z) - How Faithful is your Synthetic Data? Sample-level Metrics for Evaluating
and Auditing Generative Models [95.8037674226622]
ドメインに依存しない方法で生成モデルの忠実度,多様性,一般化性能を特徴付ける3次元評価指標を提案する。
当社のメトリクスは、精度リコール分析により統計的発散測定を統合し、モデル忠実度と多様性のサンプルおよび分布レベルの診断を可能にします。
論文 参考訳(メタデータ) (2021-02-17T18:25:30Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Semi-nonparametric Latent Class Choice Model with a Flexible Class
Membership Component: A Mixture Model Approach [6.509758931804479]
提案したモデルは、従来のランダムユーティリティ仕様に代わるアプローチとして混合モデルを用いて潜在クラスを定式化する。
その結果,混合モデルにより潜在クラス選択モデル全体の性能が向上した。
論文 参考訳(メタデータ) (2020-07-06T13:19:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。