論文の概要: Estimation methods of Matrix-valued AR model
- arxiv url: http://arxiv.org/abs/2505.15220v1
- Date: Wed, 21 May 2025 07:47:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-22 15:42:59.2071
- Title: Estimation methods of Matrix-valued AR model
- Title(参考訳): 行列値ARモデルの推定法
- Authors: Kamil Kołodziejski,
- Abstract要約: 本稿では,行列自己回帰モデル(MAR)の新しい推定法を提案する。
MARモデルは、高次元の時系列に類似するが、効果的である。
実験の結果,提案手法を用いて推定したMARモデルは,MAEやRMSEなどのメトリクスにまたがるVARモデルに匹敵する適合性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article proposes novel estimation methods for the Matrix Autoregressive (MAR) model, specifically adaptations of the Yule-Walker equations and Burg's method, addressing limitations in existing techniques. The MAR model, by maintaining a matrix structure and requiring significantly fewer parameters than vector autoregressive (VAR) models, offers a parsimonious, yet effective, alternative for high-dimensional time series. Empirical results demonstrate that MAR models estimated via the proposed methods achieve a comparable fit to VAR models across metrics such as MAE and RMSE. These findings underscore the utility of Yule-Walker and Burg-type estimators in constructing efficient and interpretable models for complex temporal data.
- Abstract(参考訳): 本稿では,行列自己回帰(MAR)モデルの新しい推定法,特にYule-Walker方程式の適応とBurgの手法を提案し,既存の手法の限界に対処する。
MARモデルは行列構造を維持し、ベクトル自己回帰(VAR)モデルよりもはるかに少ないパラメータを必要とすることにより、高次元時系列に対する同相で効果的な代替手段を提供する。
実験の結果,提案手法を用いて推定したMARモデルは,MAEやRMSEなどのメトリクスにまたがるVARモデルに匹敵する適合性を示した。
これらの結果は, 複雑な時間データに対する効率的かつ解釈可能なモデル構築におけるYule-WalkerおよびBurg型推定器の有用性を裏付けるものである。
関連論文リスト
- Reinforced Model Merging [53.84354455400038]
本稿では,タスク統合に適した環境とエージェントを含むRMM(Reinforced Model Merging)という,革新的なフレームワークを提案する。
評価プロセス中にデータサブセットを利用することで、報酬フィードバックフェーズのボトルネックに対処し、RMMを最大100倍高速化する。
論文 参考訳(メタデータ) (2025-03-27T08:52:41Z) - Exploring Patterns Behind Sports [3.2838877620203935]
本稿では、ARIMAとLSTMを組み合わせたハイブリッドモデルを用いて、時系列予測のための包括的なフレームワークを提案する。
このモデルには埋め込みやPCAといった機能エンジニアリング技術が組み込まれており、生データを低次元の表現に変換する。
論文 参考訳(メタデータ) (2025-02-11T11:51:07Z) - Explaining Modern Gated-Linear RNNs via a Unified Implicit Attention Formulation [54.50526986788175]
効率的なシーケンスモデリングの最近の進歩は、Mamba、RWKV、および様々なゲートRNNのような注意のないレイヤーを生み出している。
我々はこれらのモデルの統一的なビューを示し、暗黙の因果自己注意層のような層を定式化する。
筆者らのフレームワークは,異なるレイヤに対する類似の基盤となるメカニズムを比較検討し,説明可能性の手法を直接適用する手段を提供する。
論文 参考訳(メタデータ) (2024-05-26T09:57:45Z) - A Two-Scale Complexity Measure for Deep Learning Models [2.512406961007489]
有効次元に基づく統計モデルのための新しいキャパシティ尺度2sEDを導入する。
新しい量は、モデル上の軽度の仮定の下で一般化誤差を証明的に有界にする。
標準データセットと一般的なモデルアーキテクチャのシミュレーションは、2sEDがトレーニングエラーとよく相関していることを示している。
論文 参考訳(メタデータ) (2024-01-17T12:50:50Z) - Consensus-Adaptive RANSAC [104.87576373187426]
本稿では,パラメータ空間の探索を学習する新しいRANSACフレームワークを提案する。
注意機構は、ポイント・ツー・モデル残差のバッチで動作し、軽量のワンステップ・トランスフォーマーで見いだされたコンセンサスを考慮するために、ポイント・ツー・モデル推定状態を更新する。
論文 参考訳(メタデータ) (2023-07-26T08:25:46Z) - An Interpretable and Efficient Infinite-Order Vector Autoregressive
Model for High-Dimensional Time Series [1.4939176102916187]
本稿では,高次元時系列に対する新しいスパース無限次VARモデルを提案する。
このモデルによって得られたVARMA型力学の時間的・横断的な構造は別々に解釈できる。
統計的効率と解釈可能性の向上は、時間的情報をほとんど失わずに達成できる。
論文 参考訳(メタデータ) (2022-09-02T17:14:24Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Scaling Hidden Markov Language Models [118.55908381553056]
この研究は、HMMを言語モデリングデータセットに拡張するという課題を再考する。
本研究では,HMMを大規模状態空間に拡張する手法を提案する。
論文 参考訳(メタデータ) (2020-11-09T18:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。