Using Federated Machine Learning in Predictive Maintenance of Jet Engines
- URL: http://arxiv.org/abs/2502.05321v1
- Date: Fri, 07 Feb 2025 20:41:36 GMT
- Title: Using Federated Machine Learning in Predictive Maintenance of Jet Engines
- Authors: Asaph Matheus Barbosa, Thao Vy Nhat Ngo, Elaheh Jafarigol, Theodore B. Trafalis, Emuobosa P. Ojoboh,
- Abstract summary: This paper aims to predict the Remaining Useful Life (RUL) of turbine jet engines using a federated machine learning framework.
The system aims to capture complex computation and patterns in the engine data to enhance the accuracy of RUL predictions.
- Score: 0.0
- License:
- Abstract: The goal of this paper is to predict the Remaining Useful Life (RUL) of turbine jet engines using a federated machine learning framework. Federated Learning enables multiple edge devices/nodes or servers to collaboratively train a shared model without sharing sensitive data, thus preserving data privacy and security. By implementing a nonlinear model, the system aims to capture complex relationships and patterns in the engine data to enhance the accuracy of RUL predictions. This approach leverages decentralized computation, allowing models to be trained locally at each device before aggregating the learned weights at a central server. By predicting the RUL of jet engines accurately, maintenance schedules can be optimized, downtime reduced, and operational efficiency improved, ultimately leading to cost savings and enhanced performance in the aviation industry. Computational results are provided by using the C-MAPSS dataset which is publicly available on the NASA website and is a valuable resource for studying and analyzing engine degradation behaviors in various operational scenarios.
Related papers
- Data-driven tool wear prediction in milling, based on a process-integrated single-sensor approach [1.6574413179773764]
This study explores data-driven methods, in particular deep learning, for tool wear prediction.
The study evaluates several machine learning models, including convolutional neural networks (CNN), long short-term memory networks (LSTM), support vector machines (SVM) and decision trees.
The ConvNeXt model has an exceptional performance, achieving a 99.1% accuracy in identifying tool wear using data from only four milling tools operated until they are worn.
arXiv Detail & Related papers (2024-12-27T23:10:32Z) - Fuel Consumption Prediction for a Passenger Ferry using Machine Learning
and In-service Data: A Comparative Study [5.516843968790116]
This paper presents models that can predict fuel consumption using in-service data collected from a passenger ship.
The best predictive performance was from a model developed using the XGboost technique which is a boosting ensemble approach.
arXiv Detail & Related papers (2023-10-19T19:35:38Z) - TranDRL: A Transformer-Driven Deep Reinforcement Learning Enabled Prescriptive Maintenance Framework [58.474610046294856]
Industrial systems demand reliable predictive maintenance strategies to enhance operational efficiency and reduce downtime.
This paper introduces an integrated framework that leverages the capabilities of the Transformer model-based neural networks and deep reinforcement learning (DRL) algorithms to optimize system maintenance actions.
arXiv Detail & Related papers (2023-09-29T02:27:54Z) - An Interpretable Systematic Review of Machine Learning Models for
Predictive Maintenance of Aircraft Engine [0.12289361708127873]
This paper presents an interpretable review of various machine learning and deep learning models to predict the maintenance of aircraft engine.
In this study, sensor data is utilized to predict aircraft engine failure within a predetermined number of cycles using LSTM, Bi-LSTM, RNN, Bi-RNN GRU, Random Forest, KNN, Naive Bayes, and Gradient Boosting.
A lucrative accuracy of 97.8%, 97.14%, and 96.42% are achieved by GRU, Bi-LSTM, and LSTM respectively.
arXiv Detail & Related papers (2023-09-23T08:54:10Z) - Advancing Reacting Flow Simulations with Data-Driven Models [50.9598607067535]
Key to effective use of machine learning tools in multi-physics problems is to couple them to physical and computer models.
The present chapter reviews some of the open opportunities for the application of data-driven reduced-order modeling of combustion systems.
arXiv Detail & Related papers (2022-09-05T16:48:34Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - SOLIS -- The MLOps journey from data acquisition to actionable insights [62.997667081978825]
In this paper we present a unified deployment pipeline and freedom-to-operate approach that supports all requirements while using basic cross-platform tensor framework and script language engines.
This approach however does not supply the needed procedures and pipelines for the actual deployment of machine learning capabilities in real production grade systems.
arXiv Detail & Related papers (2021-12-22T14:45:37Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
This paper surveys the state-of-the-art open-source AutoML tools, applies them to data collected from streams, and measures how their performance changes over time.
The results show that off-the-shelf AutoML tools can provide satisfactory results but in the presence of concept drift, detection or adaptation techniques have to be applied to maintain the predictive accuracy over time.
arXiv Detail & Related papers (2021-06-14T11:42:46Z) - Federated Learning with Unreliable Clients: Performance Analysis and
Mechanism Design [76.29738151117583]
Federated Learning (FL) has become a promising tool for training effective machine learning models among distributed clients.
However, low quality models could be uploaded to the aggregator server by unreliable clients, leading to a degradation or even a collapse of training.
We model these unreliable behaviors of clients and propose a defensive mechanism to mitigate such a security risk.
arXiv Detail & Related papers (2021-05-10T08:02:27Z) - Autoencoding Features for Aviation Machine Learning Problems [0.0]
This research explored an unsupervised learning method, autoencoder, to extract effective features for aviation machine learning problems.
The research results show that the autoencoder can not only automatically extract effective features for the flight track data, but also efficiently deep clean data, thereby reducing the workload of data scientists.
The developed applications and techniques are shared with the whole aviation community to improve effectiveness of ongoing and future machine learning studies.
arXiv Detail & Related papers (2020-11-03T04:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.