論文の概要: Removing Neural Signal Artifacts with Autoencoder-Targeted Adversarial Transformers (AT-AT)
- arxiv url: http://arxiv.org/abs/2502.05332v1
- Date: Fri, 07 Feb 2025 21:13:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:30:58.174559
- Title: Removing Neural Signal Artifacts with Autoencoder-Targeted Adversarial Transformers (AT-AT)
- Title(参考訳): 自己エンコーダをターゲットとした逆変換器(AT-AT)によるニューラルネットワークアーチファクトの除去
- Authors: Benjamin J. Choi,
- Abstract要約: オートエンコーダをターゲットとした対向変換器(AT-AT)を用いて脳波データからEMG干渉をフィルタリングする機械学習システムを提案する。
67名の被験者から公開された神経データを用いてAT-ATをトレーニングしたところ、システムはより大きなモデルに匹敵するテスト性能を達成できたことがわかった。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Electromyogenic (EMG) noise is a major contamination source in EEG data that can impede accurate analysis of brain-specific neural activity. Recent literature on EMG artifact removal has moved beyond traditional linear algorithms in favor of machine learning-based systems. However, existing deep learning-based filtration methods often have large compute footprints and prohibitively long training times. In this study, we present a new machine learning-based system for filtering EMG interference from EEG data using an autoencoder-targeted adversarial transformer (AT-AT). By leveraging the lightweight expressivity of an autoencoder to determine optimal time-series transformer application sites, our AT-AT architecture achieves a >90% model size reduction compared to published artifact removal models. The addition of adversarial training ensures that filtered signals adhere to the fundamental characteristics of EEG data. We trained AT-AT using published neural data from 67 subjects and found that the system was able to achieve comparable test performance to larger models; AT-AT posted a mean reconstructive correlation coefficient above 0.95 at an initial signal-to-noise ratio (SNR) of 2 dB and 0.70 at -7 dB SNR. Further research generalizing these results to broader sample sizes beyond these isolated test cases will be crucial; while outside the scope of this study, we also include results from a real-world deployment of AT-AT in the Appendix.
- Abstract(参考訳): エレクトロマイシン(EMG)ノイズは脳波データの主要な汚染源であり、脳特異的神経活動の正確な分析を妨げる。
近年のEMGアーティファクト除去に関する文献は、従来の線形アルゴリズムを超えて機械学習ベースのシステムに移行している。
しかし、既存のディープラーニングベースのフィルタリング手法は、大きな計算フットプリントを持ち、非常に長いトレーニング時間を持つことが多い。
本研究では,オートエンコーダをターゲットとした対向変換器(AT-AT)を用いて,脳波データからEMG干渉をフィルタリングする機械学習システムを提案する。
オートエンコーダの軽量な表現性を利用して最適な時系列トランスフォーマーアプリケーションサイトを決定することにより、AT-ATアーキテクチャは、公開されたアーティファクト除去モデルと比較して、90%以上のモデルサイズ削減を実現している。
敵対的トレーニングの追加により、フィルタリングされた信号が脳波データの基本的特性に従うことが保証される。
AT-ATは2dBの初期信号-雑音比(SNR)と7dB SNRの0.70で0.95以上の平均再構成相関係数を投稿した。
本研究は,本研究の範囲外では,AppendixにおけるAT-ATの実際の展開の結果も含む。
関連論文リスト
- CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
交互注意(CEReBrO)を用いた脳振動の表現のための圧縮法について紹介する。
トークン化方式は、チャネルごとのパッチで脳波信号を表現します。
本研究では,チャネル内時間的ダイナミックスとチャネル間空間的相関を共同でモデル化し,通常の自己アテンションに比べて6倍少ないメモリで2倍の速度向上を実現するための注意機構を提案する。
論文 参考訳(メタデータ) (2025-01-18T21:44:38Z) - Targeted Adversarial Denoising Autoencoders (TADA) for Neural Time Series Filtration [0.0]
脳波(EEG)時系列データをフィルタリングするための機械学習(ML)ベースのアルゴリズムは、面倒なトレーニング時間、正規化、正確な再構築に関連する課題に直面している。
本稿では,ロジスティック共分散目標対向型オートエンコーダ(TADA)により駆動されるMLフィルタリングアルゴリズムを提案する。
この仮説を検証するため、TADAシステムプロトタイプをトレーニングし、EEGdenoiseNetデータセットの脳波データから筋電図(EMG)ノイズを除去するタスクで評価した。
論文 参考訳(メタデータ) (2025-01-09T04:41:50Z) - CwA-T: A Channelwise AutoEncoder with Transformer for EEG Abnormality Detection [0.4448543797168715]
CwA-Tは、チャネルワイズCNNベースのオートエンコーダと、効率的なEEG異常検出のためのシングルヘッドトランスフォーマー分類器を組み合わせた、新しいフレームワークである。
TUH異常脳波コーパスを用いて、提案モデルは85.0%の精度、76.2%の感度、91.2%の特異性を達成する。
この枠組みはチャネル設計を通じて解釈可能性を維持しており、神経科学研究や臨床実践における将来の応用の可能性を示している。
論文 参考訳(メタデータ) (2024-12-19T04:38:34Z) - Comparison of Autoencoder Encodings for ECG Representation in Downstream Prediction Tasks [2.2616169634370076]
自動エンコーダ(SAE)、Annealed beta-VAE(Abeta-VAE)、Cbeta-VAE(Cbeta-VAE)の3種類の新しい変分自動エンコーダ(VAE)を導入した。
アベタVAEは、信号ノイズのレベルである平均絶対誤差(MAE)を15.7プラス3.2マイクロボルトに減らした。
以上の結果から,これらのVAE符号化はECGデータの簡易化だけでなく,限られたラベル付き学習データを用いた文脈での深層学習の実践的解決にも有効であることが示唆された。
論文 参考訳(メタデータ) (2024-10-03T19:30:05Z) - ART: Artifact Removal Transformer for Reconstructing Noise-Free Multichannel Electroencephalographic Signals [0.10499611180329801]
脳波(EEG)のアーチファクト除去は神経科学的な分析と脳-コンピュータインターフェース(BCI)のパフォーマンスに大きな影響を及ぼす。
本研究は,脳波信号の過渡ミリ秒スケール特性を順応的に捉えるため,トランスフォーマーアーキテクチャを用いた脳波復調モデルを提案する。
脳波信号処理においてARTが他の深層学習に基づくアーティファクト除去手法を上回ることが確認された。
論文 参考訳(メタデータ) (2024-09-11T15:05:40Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
AAD(Auditory Attention Detection)は、マルチスピーカー環境で脳信号からターゲット話者を検出することを目的としている。
現在のアプローチは主に、画像のようなユークリッドデータを処理するために設計された従来の畳み込みニューラルネットワークに依存している。
本稿では、入力として音声刺激を必要としないAADのための動的グラフ自己蒸留(DGSD)手法を提案する。
論文 参考訳(メタデータ) (2023-09-07T13:43:46Z) - Decision Forest Based EMG Signal Classification with Low Volume Dataset
Augmented with Random Variance Gaussian Noise [51.76329821186873]
我々は6種類の手振りを限定的なサンプル数で分類できるモデルを作成し、より広い聴衆によく一般化する。
信号のランダムなバウンドの使用など、より基本的な手法のセットにアピールするが、これらの手法がオンライン環境で持てる力を示したいと考えている。
論文 参考訳(メタデータ) (2022-06-29T23:22:18Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
神経活動を記録して発作を検出するインプラントデバイスは、発作を抑えるために警告を発したり神経刺激を誘発したりするために採用されている。
移植可能な発作検出システムでは、低出力で最先端のオンライン学習アルゴリズムを使用して、神経信号のドリフトに動的に適応することができる。
SOULはTSMCの28nmプロセスで0.1mm2を占め、1.5nJ/分級エネルギー効率を実現した。
論文 参考訳(メタデータ) (2021-10-01T23:01:20Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
機械学習(ML)と人工知能(AI)はITシステムの運用とメンテナンスに適用される。
1つの方向は、修復自動化を可能にするために、繰り返し発生する異常タイプを認識することである。
与えられたデータの次元変化に不変な手法を提案する。
論文 参考訳(メタデータ) (2021-02-25T14:24:49Z) - EEG-Inception: An Accurate and Robust End-to-End Neural Network for
EEG-based Motor Imagery Classification [123.93460670568554]
本稿では,脳波に基づく運動画像(MI)分類のための新しい畳み込みニューラルネットワーク(CNN)アーキテクチャを提案する。
提案したCNNモデル、すなわちEEG-Inceptionは、Inception-Timeネットワークのバックボーン上に構築されている。
提案するネットワークは、生のEEG信号を入力とし、複雑なEEG信号前処理を必要としないため、エンドツーエンドの分類である。
論文 参考訳(メタデータ) (2021-01-24T19:03:10Z) - Improving the performance of EEG decoding using anchored-STFT in
conjunction with gradient norm adversarial augmentation [0.22835610890984162]
EEG信号は空間分解能が低く、しばしばノイズやアーティファクトで歪められる。
ディープラーニングアルゴリズムは、隠れた意味のあるパターンを学習するのに非常に効率的であることが証明されている。
本研究では,新しい深層学習モデルと組み合わせた入力生成(機能抽出)手法を提案する。
論文 参考訳(メタデータ) (2020-11-30T11:18:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。