論文の概要: Deep Generative model that uses physical quantities to generate and retrieve solar magnetic active regions
- arxiv url: http://arxiv.org/abs/2502.05351v1
- Date: Fri, 07 Feb 2025 21:44:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:04.480589
- Title: Deep Generative model that uses physical quantities to generate and retrieve solar magnetic active regions
- Title(参考訳): 太陽磁気活動領域の生成と回収に物理量を用いる深部生成モデル
- Authors: Subhamoy Chatterjee, Andres Munoz-Jaramillo, Anna Malanushenko,
- Abstract要約: 我々は3種類の機械学習モデルを統合し、物理的に解釈可能な方法で太陽磁気パッチを生成する。
スペースウェザーHMIアクティブリージョンパッチからの磁界測定を用いてGAN(Generative Adversarial Network)のトレーニングを行う。
GAN-SVMの組み合わせにより、ユーザーは所定の物理量でのみスムーズに変化する高品質なパッチを作成できる。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Deep generative models have shown immense potential in generating unseen data that has properties of real data. These models learn complex data-generating distributions starting from a smaller set of latent dimensions. However, generative models have encountered great skepticism in scientific domains due to the disconnection between generative latent vectors and scientifically relevant quantities. In this study, we integrate three types of machine learning models to generate solar magnetic patches in a physically interpretable manner and use those as a query to find matching patches in real observations. We use the magnetic field measurements from Space-weather HMI Active Region Patches (SHARPs) to train a Generative Adversarial Network (GAN). We connect the physical properties of GAN-generated images with their latent vectors to train Support Vector Machines (SVMs) that do mapping between physical and latent spaces. These produce directions in the GAN latent space along which known physical parameters of the SHARPs change. We train a self-supervised learner (SSL) to make queries with generated images and find matches from real data. We find that the GAN-SVM combination enables users to produce high-quality patches that change smoothly only with a prescribed physical quantity, making generative models physically interpretable. We also show that GAN outputs can be used to retrieve real data that shares the same physical properties as the generated query. This elevates Generative Artificial Intelligence (AI) from a means-to-produce artificial data to a novel tool for scientific data interrogation, supporting its applicability beyond the domain of heliophysics.
- Abstract(参考訳): 深層生成モデルは、実際のデータの性質を持つ見えないデータを生成する大きな可能性を示している。
これらのモデルは、小さな潜在次元の集合から始まる複雑なデータ生成分布を学習する。
しかし、生成的モデルは、生成的潜在ベクトルと科学的に関連する量との解離により、科学的領域において大きな懐疑論に直面している。
本研究では,3種類の機械学習モデルを統合し,物理的に解釈可能な方法で太陽磁気パッチを生成する。
スペースウェザー HMI Active Region Patches (SHARPs) の磁場測定を用いて, GAN(Generative Adversarial Network) のトレーニングを行う。
我々は,GAN生成画像の物理的特性と潜時ベクトルを接続し,物理空間と潜時空間のマッピングを行うSVM(Support Vector Machines)を訓練する。
これらは、SHARPの既知の物理パラメータが変化するGANラテント空間の方向を生成する。
我々は、自己教師付き学習者(SSL)を訓練し、生成した画像とクエリを行い、実際のデータから一致を見つける。
GAN-SVMの組み合わせにより、ユーザーは所定の物理量でのみスムーズに変化する高品質なパッチを作成でき、生成モデルを物理的に解釈できる。
また、生成したクエリと同じ物理特性を持つ実データを取得するために、GAN出力を使用することも示している。
これにより、生成人工知能(AI)は、人工データを生産する手段から、科学的データ尋問のための新しいツールへと昇格し、その適用範囲をヘリオフィジカルの領域を超えてサポートする。
関連論文リスト
- Adaptive Learning of the Latent Space of Wasserstein Generative Adversarial Networks [7.958528596692594]
我々は、潜伏ワッサーシュタインガン(LWGAN)と呼ばれる新しい枠組みを提案する。
ワッサーシュタイン自己エンコーダとワッサーシュタイン GANを融合させ、データ多様体の内在次元を適応的に学習できるようにする。
我々は,LWGANが複数のシナリオにおいて,正しい固有次元を識別可能であることを示す。
論文 参考訳(メタデータ) (2024-09-27T01:25:22Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Quantum Generative Modeling of Sequential Data with Trainable Token
Embedding [0.0]
ボルンマシンとして知られる量子インスパイアされた生成モデルは、古典的および量子的データの学習において大きな進歩を見せている。
本稿では,MPSを同時に使用可能なトレーニング可能な量子計測演算子への埋め込み法を一般化する。
私たちの研究は、トレーニング可能な埋め込みと組み合わせることで、Bornマシンはより良いパフォーマンスを示し、データセットからより深い相関関係を学習できることを示した。
論文 参考訳(メタデータ) (2023-11-08T22:56:37Z) - Improving Out-of-Distribution Robustness of Classifiers via Generative
Interpolation [56.620403243640396]
ディープニューラルネットワークは、独立かつ同一に分散されたデータ(すなわち、d)から学習する上で、優れたパフォーマンスを達成する。
しかし、アウト・オブ・ディストリビューション(OoD)データを扱う場合、その性能は著しく低下する。
多様なOoDサンプルを合成するために,複数のドメインから学習した生成モデルを融合するための生成補間法(Generative Interpolation)を開発した。
論文 参考訳(メタデータ) (2023-07-23T03:53:53Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
本研究は、観測された太陽活動状態の背後にあるデータ分布を正確に捉えるために、現在の最先端生成モデルの能力について検討する。
スーパーコンピュータ上での分散トレーニングを用いて、人間の専門家が区別できない高品質なサンプルを生成する、最大1024x1024解像度の生成モデルを訓練することができる。
論文 参考訳(メタデータ) (2023-04-14T14:40:32Z) - VTAE: Variational Transformer Autoencoder with Manifolds Learning [144.0546653941249]
深層生成モデルは、多くの潜伏変数を通して非線形データ分布の学習に成功している。
ジェネレータの非線形性は、潜在空間がデータ空間の不満足な射影を示し、表現学習が不十分になることを意味する。
本研究では、測地学と正確な計算により、深部生成モデルの性能を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-04-03T13:13:19Z) - Dynamic Molecular Graph-based Implementation for Biophysical Properties
Prediction [9.112532782451233]
本稿では,タンパク質-リガンド相互作用の動的特徴を特徴付けるため,GNNを用いたトランスフォーマーモデルに基づく新しいアプローチを提案する。
我々のメッセージパッシングトランスフォーマーは、物理シミュレーションに基づく分子動力学データに基づいて事前訓練を行い、座標構成を学習し、結合確率と親和性予測を行う。
論文 参考訳(メタデータ) (2022-12-20T04:21:19Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Physics-Integrated Variational Autoencoders for Robust and Interpretable
Generative Modeling [86.9726984929758]
我々は、不完全物理モデルの深部生成モデルへの統合に焦点を当てる。
本稿では,潜在空間の一部が物理によって基底づけられたVAEアーキテクチャを提案する。
合成および実世界のデータセットの集合に対して生成的性能改善を示す。
論文 参考訳(メタデータ) (2021-02-25T20:28:52Z) - Characterizing the Latent Space of Molecular Deep Generative Models with
Persistent Homology Metrics [21.95240820041655]
変分オート(VAE)は、エンコーダとデコーダのネットワークペアをトレーニングデータ分散の再構築のために訓練する生成モデルである。
本研究では, 深部生成モデルの潜伏空間が, 構造的および化学的特徴をエンコードできるかどうかを計測する手法を提案する。
論文 参考訳(メタデータ) (2020-10-18T13:33:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。