論文の概要: Hypencoder: Hypernetworks for Information Retrieval
- arxiv url: http://arxiv.org/abs/2502.05364v2
- Date: Thu, 01 May 2025 16:43:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:52.261344
- Title: Hypencoder: Hypernetworks for Information Retrieval
- Title(参考訳): Hypencoder: 情報検索のためのハイパーネットワーク
- Authors: Julian Killingback, Hansi Zeng, Hamed Zamani,
- Abstract要約: 私たちは、学習されたクエリ固有の関連関数として機能する小さなニューラルネットワークを使用します。
我々は,60ミリ秒未満で8.8M文書のコーパスからモデルを検索可能であることを示す。
- 参考スコア(独自算出の注目度): 20.173669986209024
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Existing information retrieval systems are largely constrained by their reliance on vector inner products to assess query-document relevance, which naturally limits the expressiveness of the relevance score they can produce. We propose a new paradigm; instead of representing a query as a vector, we use a small neural network that acts as a learned query-specific relevance function. This small neural network takes a document representation as input (in this work we use a single vector) and produces a scalar relevance score. To produce the small neural network we use a hypernetwork, a network that produces the weights of other networks, as our query encoder. We name this category of encoder models Hypencoders. Experiments on in-domain search tasks show that Hypencoders significantly outperform strong dense retrieval models and even surpass reranking models and retrieval models with an order of magnitude more parameters. To assess the extent of Hypencoders' capabilities, we evaluate on a set of hard retrieval tasks including tip-of-the-tongue and instruction-following retrieval tasks. On harder tasks, we find that the performance gap widens substantially compared to standard retrieval tasks. Furthermore, to demonstrate the practicality of our method, we implement an approximate search algorithm and show that our model is able to retrieve from a corpus of 8.8M documents in under 60 milliseconds.
- Abstract(参考訳): 既存の情報検索システムは、クエリ文書の関連性を評価するためにベクトル内積に依存しているため、それらが生成できる妥当性スコアの表現性を自然に制限する。
クエリをベクトルとして表現するのではなく、学習されたクエリ固有の関連関数として機能する小さなニューラルネットワークを使用する。
この小さなニューラルネットワークは、文書表現を入力として取り、スカラー関連スコアを生成する。
小さなニューラルネットワークを生成するには、クエリエンコーダとして、他のネットワークの重みを生成するネットワークであるハイパーネットワークを使用します。
我々は、エンコーダモデルHypencoderのこのカテゴリを命名する。
ドメイン内探索タスクの実験では、ハイペンコーダは強い密度の検索モデルよりも大幅に優れており、桁違いのパラメータを持つリグレードモデルや検索モデルを超えている。
本研究では,Hypencodersの能力の程度を評価するために,Tip-of-the-tongueや命令追従検索タスクなど,一連のハード検索タスクについて評価する。
難解なタスクでは、標準的な検索タスクと比較して性能差が大幅に大きくなることが分かる。
さらに,本手法の実用性を示すために,近似探索アルゴリズムを実装し,60ミリ秒未満で8.8M文書のコーパスから検索可能であることを示す。
関連論文リスト
- A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks [81.2624272756733]
密集検索では、ディープエンコーダは入力とターゲットの両方に埋め込みを提供する。
我々は、古いキャッシュされたターゲット埋め込みを調整できる小さなパラメトリック補正ネットワークを訓練する。
私たちのアプローチは、トレーニング中にターゲット埋め込み更新が行われなくても、最先端の結果と一致します。
論文 参考訳(メタデータ) (2024-09-03T13:29:13Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - How Does Generative Retrieval Scale to Millions of Passages? [68.98628807288972]
各種コーパス尺度における生成的検索手法の実証的研究を行った。
我々は8.8Mパスのコーパスで数百万のパスに生成検索をスケールし、モデルサイズを最大11Bパラメータまで評価する。
生成的検索は、小さなコーパス上の最先端のデュアルエンコーダと競合するが、数百万のパスへのスケーリングは依然として重要で未解決の課題である。
論文 参考訳(メタデータ) (2023-05-19T17:33:38Z) - Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization [76.57699934689468]
ニューラルモデルの性能を高めるために,デコーダ側で詳細なTokenレベル検索強化機構(Tram)を提案する。
文脈的コードセマンティクスの取得におけるトークンレベルの検索の課題を克服するために,コードセマンティクスを個々の要約トークンに統合することを提案する。
論文 参考訳(メタデータ) (2023-05-18T16:02:04Z) - CorpusBrain: Pre-train a Generative Retrieval Model for
Knowledge-Intensive Language Tasks [62.22920673080208]
単一ステップ生成モデルは、検索プロセスを劇的に単純化し、エンドツーエンドで最適化することができる。
我々は、事前学習された生成検索モデルをCorpsBrainと名付け、コーパスに関する全ての情報が、追加のインデックスを構築することなく、そのパラメータにエンコードされる。
論文 参考訳(メタデータ) (2022-08-16T10:22:49Z) - GROWN+UP: A Graph Representation Of a Webpage Network Utilizing
Pre-training [0.2538209532048866]
我々は、Webページ構造を取り込み、大量のラベル付きデータに基づいて事前訓練を行い、Webページ上の任意のタスクに効果的に微調整できる、非依存のディープグラフニューラルネットワーク特徴抽出器を導入する。
我々は,Webページボイラプレートの除去とジャンル分類という,非常に異なる2つのベンチマークで複数のデータセットを用いて,事前学習したモデルが最先端の結果を得ることを示す。
論文 参考訳(メタデータ) (2022-08-03T13:37:27Z) - Discrete Key-Value Bottleneck [95.61236311369821]
ディープニューラルネットワークは、データストリームがi.d.d.であり、ラベル付きデータが豊富である分類タスクでうまく機能する。
この課題に対処した強力なアプローチの1つは、手軽に利用可能なデータ量に対する大規模なエンコーダの事前トレーニングと、タスク固有のチューニングである。
しかし、新しいタスクを考えると、多くの重みを微調整する必要があるため、エンコーダの重みを更新することは困難であり、その結果、以前のタスクに関する情報を忘れてしまう。
この問題に対処するモデルアーキテクチャを提案し,個別かつ学習可能なキー値符号のペアを含む離散的ボトルネックの上に構築する。
論文 参考訳(メタデータ) (2022-07-22T17:52:30Z) - Variable Bitrate Neural Fields [75.24672452527795]
本稿では,特徴格子を圧縮し,メモリ消費を最大100倍に削減する辞書手法を提案する。
辞書の最適化をベクトル量子化オートデコーダ問題として定式化し、直接監督できない空間において、エンドツーエンドの離散神経表現を学習する。
論文 参考訳(メタデータ) (2022-06-15T17:58:34Z) - Gluing Neural Networks Symbolically Through Hyperdimensional Computing [8.209945970790741]
ニューラルネットワークの出力信号の最終的な分類を符号化するためにバイナリハイパーベクタを用いるという概念について検討する。
これにより、複数のニューラルネットワークが協力して問題を解決することができ、オーバーヘッドは少なくなる。
これは、非常に少ないオーバーヘッドを使用しながら、芸術の状態を上回り、あるいはそれと同等であることがわかった。
論文 参考訳(メタデータ) (2022-05-31T04:44:02Z) - ED2LM: Encoder-Decoder to Language Model for Faster Document Re-ranking
Inference [70.36083572306839]
本稿では,再ランク付けのための新しいトレーニングおよび推論パラダイムを提案する。
文書形式を用いて事前訓練したエンコーダ・デコーダモデルを精査し,クエリ生成を行う。
このエンコーダ-デコーダアーキテクチャは,推論中にデコーダのみの言語モデルに分解可能であることを示す。
論文 参考訳(メタデータ) (2022-04-25T06:26:29Z) - Autoregressive Search Engines: Generating Substrings as Document
Identifiers [53.0729058170278]
自動回帰言語モデルは、回答を生成するデファクト標準として現れています。
これまでの研究は、探索空間を階層構造に分割する方法を探究してきた。
本研究では,検索空間の任意の構造を強制しない代替として,経路内のすべてのngramを識別子として使用することを提案する。
論文 参考訳(メタデータ) (2022-04-22T10:45:01Z) - Learning Deep Semantic Model for Code Search using CodeSearchNet Corpus [17.6095840480926]
マルチモーダル・ソースのユーティリティを利用する新しいディープ・セマンティック・モデルを提案する。
提案したモデルを適用して,意味的コード検索に関するCodeSearchNetの課題に対処する。
我々のモデルはCodeSearchNetコーパスでトレーニングされ、ホールドアウトデータに基づいて評価され、最終モデルは0.384 NDCGに達し、このベンチマークで優勝した。
論文 参考訳(メタデータ) (2022-01-27T04:15:59Z) - A Variational Graph Autoencoder for Manipulation Action Recognition and
Prediction [1.1816942730023883]
シンボルシーングラフから操作タスクの認識と予測を共同で学習するディープグラフオートエンコーダを提案する。
我々のネットワークは2つの分岐を持つ変分オートエンコーダ構造を持ち、1つは入力グラフタイプを識別し、もう1つは将来のグラフを予測する。
提案手法は,MANIACとMSRC-9の2つの異なるデータセット上で異なる最先端手法に対してベンチマークを行い,提案手法がより優れた性能を実現することを示す。
論文 参考訳(メタデータ) (2021-10-25T21:40:42Z) - Learning Purified Feature Representations from Task-irrelevant Labels [18.967445416679624]
本稿では,タスク関連ラベルから抽出したタスク関連機能を利用したPurifiedLearningという新しい学習フレームワークを提案する。
本研究は,PurifiedLearningの有効性を実証する,ソリッド理論解析と広範囲な実験に基づいている。
論文 参考訳(メタデータ) (2021-02-22T12:50:49Z) - Sparse, Dense, and Attentional Representations for Text Retrieval [25.670835450331943]
デュアルエンコーダは、文書やクエリを高密度な低次元ベクトルに符号化することで検索を行う。
単語の疎結合モデルや注目ニューラルネットワークと比較して,このアーキテクチャのキャパシティについて検討する。
本稿では,2重エンコーダの効率性と,よりコストのかかる注目アーキテクチャの表現性を結合した単純なニューラルモデルを提案する。
論文 参考訳(メタデータ) (2020-05-01T02:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。