論文の概要: Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints
- arxiv url: http://arxiv.org/abs/2502.05414v1
- Date: Sat, 08 Feb 2025 02:46:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:34:58.270045
- Title: Graph-based Molecular In-context Learning Grounded on Morgan Fingerprints
- Title(参考訳): モーガンフィンガープリントに基づくグラフに基づく分子インコンテキスト学習
- Authors: Ali Al-Lawati, Jason Lucas, Zhiwei Zhang, Prasenjit Mitra, Suhang Wang,
- Abstract要約: In-context Learning (ICL) では、プロパティ予測や分子キャプションなどの分子タスクのための大規模言語モデル(LLM)を、慎重に選択された実演例を入力プロンプトに埋め込む。
しかし、現在の分子タスクのプロンプト検索法は、モーガン指紋のような分子の特徴的類似性に依存しており、これはグローバル分子と原子結合の関係を適切に捉えていない。
本稿では,グローバル分子構造をグラフニューラルネットワーク(GNN)とテキストキャプション(記述)に整合させ,モーガン指紋による局所的特徴類似性を活用する自己教師付き学習手法GAMICを提案する。
- 参考スコア(独自算出の注目度): 28.262593876388397
- License:
- Abstract: In-context learning (ICL) effectively conditions large language models (LLMs) for molecular tasks, such as property prediction and molecule captioning, by embedding carefully selected demonstration examples into the input prompt. This approach avoids the computational overhead of extensive pertaining and fine-tuning. However, current prompt retrieval methods for molecular tasks have relied on molecule feature similarity, such as Morgan fingerprints, which do not adequately capture the global molecular and atom-binding relationships. As a result, these methods fail to represent the full complexity of molecular structures during inference. Moreover, small-to-medium-sized LLMs, which offer simpler deployment requirements in specialized systems, have remained largely unexplored in the molecular ICL literature. To address these gaps, we propose a self-supervised learning technique, GAMIC (Graph-Aligned Molecular In-Context learning, which aligns global molecular structures, represented by graph neural networks (GNNs), with textual captions (descriptions) while leveraging local feature similarity through Morgan fingerprints. In addition, we introduce a Maximum Marginal Relevance (MMR) based diversity heuristic during retrieval to optimize input prompt demonstration samples. Our experimental findings using diverse benchmark datasets show GAMIC outperforms simple Morgan-based ICL retrieval methods across all tasks by up to 45%.
- Abstract(参考訳): In-context Learning (ICL) は、入力プロンプトに慎重に選択された実演例を埋め込むことにより、プロパティ予測や分子キャプションなどの分子タスクのための大規模言語モデル(LLM)を効果的に条件付ける。
このアプローチは、広範囲にわたる関連する微調整の計算オーバーヘッドを回避する。
しかし、現在の分子タスクのプロンプト検索法は、モーガン指紋のような分子の特徴的類似性に依存しており、これはグローバル分子と原子結合の関係を適切に捉えていない。
その結果、これらの手法は推論中に分子構造の完全な複雑さを表現できない。
さらに, 分子ICLの文献では, より単純な展開要件を提供する小型のLCMがほとんど探索されていない。
これらのギャップに対処するために,GAMIC (Graph-Aligned Molecular In-Context Learning) という自己教師付き学習手法を提案する。
さらに,検索中にMMRに基づく多様性ヒューリスティックを導入し,インプットプロンプトのデモサンプルを最適化する。
各種ベンチマークデータを用いた実験結果から、GAMICはすべてのタスクにおける単純なMorganベースのICL検索手法を最大45%向上させることがわかった。
関連論文リスト
- Pre-trained Molecular Language Models with Random Functional Group Masking [54.900360309677794]
SMILESをベースとしたアンダーリネム分子アンダーリネム言語アンダーリネムモデルを提案し,特定の分子原子に対応するSMILESサブシーケンスをランダムにマスキングする。
この技術は、モデルに分子構造や特性をよりよく推測させ、予測能力を高めることを目的としている。
論文 参考訳(メタデータ) (2024-11-03T01:56:15Z) - MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis [18.940529282539842]
約140,000個の小分子からなる大規模かつ高精度な分子表現データセットを構築した。
我々のデータセットは、モデルの開発と設計をガイドするために、重要な物理化学的解釈性を提供します。
このデータセットは、分子表現学習のためのより正確で信頼性の高いベンチマークとして機能すると考えています。
論文 参考訳(メタデータ) (2024-06-13T02:50:23Z) - Data-Efficient Molecular Generation with Hierarchical Textual Inversion [48.816943690420224]
分子生成のための階層型テキスト変換法 (HI-Mol) を提案する。
HI-Molは分子分布を理解する上での階層的情報、例えば粗い特徴ときめ細かい特徴の重要性にインスパイアされている。
単一レベルトークン埋め込みを用いた画像領域の従来のテキストインバージョン法と比較して, マルチレベルトークン埋め込みにより, 基礎となる低ショット分子分布を効果的に学習することができる。
論文 参考訳(メタデータ) (2024-05-05T08:35:23Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIGは、画像とグラフ構造に基づいて分子特性を予測するための、新しいMultiModaL分子事前学習フレームワークである。
両者の分子表現の強さを融合させる。
ベンチマークグループ内の分子特性予測に関連する下流タスクでは、パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-11-28T10:28:35Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Implicit Geometry and Interaction Embeddings Improve Few-Shot Molecular
Property Prediction [53.06671763877109]
我々は, 複雑な分子特性を符号化した分子埋め込みを開発し, 数発の分子特性予測の性能を向上させる。
我々の手法は大量の合成データ、すなわち分子ドッキング計算の結果を利用する。
複数の分子特性予測ベンチマークでは、埋め込み空間からのトレーニングにより、マルチタスク、MAML、プロトタイプラーニング性能が大幅に向上する。
論文 参考訳(メタデータ) (2023-02-04T01:32:40Z) - t-SMILES: A Scalable Fragment-based Molecular Representation Framework for De Novo Molecule Generation [9.116670221263753]
本研究では, t-SMILESと呼ばれる, フレキシブル, フラグメントベース, マルチスケールな分子表現フレームワークを提案する。
フラグメント化された分子グラフから生成された全二分木上で幅優先探索を行うことにより得られるSMILES型文字列を用いて分子を記述する。
従来のSMILES、DeepSMILES、SELFIES、ベースラインモデルをゴール指向タスクで大幅に上回っている。
論文 参考訳(メタデータ) (2023-01-04T21:41:01Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
本稿では,MoLFormerと呼ばれる効率的なトランスフォーマーエンコーダモデルのトレーニングにより得られた分子埋め込みについて述べる。
実験の結果,グラフベースおよび指紋ベースによる教師付き学習ベースラインと比較して,学習された分子表現が競合的に機能することが確認された。
論文 参考訳(メタデータ) (2021-06-17T14:33:55Z) - Few-Shot Graph Learning for Molecular Property Prediction [46.60746023179724]
分子特性予測の新しいモデルであるMeta-MGNNを提案する。
ラベルのない分子情報を利用するため、Meta-MGNNはさらに分子構造、属性ベースの自己監視モジュール、および自己注意のタスクウェイトを組み込む。
2つの公開マルチプロパティデータセットに関する広範な実験は、Meta-MGNNがさまざまな最先端のメソッドを上回っていることを示しています。
論文 参考訳(メタデータ) (2021-02-16T01:55:34Z) - ASGN: An Active Semi-supervised Graph Neural Network for Molecular
Property Prediction [61.33144688400446]
本稿では,ラベル付き分子とラベルなし分子の両方を組み込んだ,アクティブ半教師付きグラフニューラルネットワーク(ASGN)を提案する。
教師モデルでは,分子構造や分子分布から情報を共同で活用する汎用表現を学習するための,新しい半教師付き学習手法を提案する。
最後に,分子多様性の観点から,フレームワーク学習全体を通して情報的データを選択するための新しい能動的学習戦略を提案する。
論文 参考訳(メタデータ) (2020-07-07T04:22:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。