論文の概要: Convolutional Neural Network Segmentation for Satellite Imagery Data to Identify Landforms Using U-Net Architecture
- arxiv url: http://arxiv.org/abs/2502.05476v1
- Date: Sat, 08 Feb 2025 07:27:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:32:16.154908
- Title: Convolutional Neural Network Segmentation for Satellite Imagery Data to Identify Landforms Using U-Net Architecture
- Title(参考訳): U-Netアーキテクチャを用いた地形同定のための衛星画像データの畳み込みニューラルネットワーク分割
- Authors: Mitul Goswami, Sainath Dey, Aniruddha Mukherjee, Suneeta Mohanty, Prasant Kumar Pattnaik,
- Abstract要約: この研究は、CNNセグメンテーション技術を用いて、効率的な特徴抽出にU-Netモデルを適用した。
このモデルはセマンティックセグメンテーションタスクに優れ、高解像度の出力、迅速な特徴抽出、幅広いアプリケーションに対する柔軟性を示す。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This study demonstrates a novel use of the U-Net architecture in the field of semantic segmentation to detect landforms using preprocessed satellite imagery. The study applies the U-Net model for effective feature extraction by using Convolutional Neural Network (CNN) segmentation techniques. Dropout is strategically used for regularization to improve the model's perseverance, and the Adam optimizer is used for effective training. The study thoroughly assesses the performance of the U-Net architecture utilizing a large sample of preprocessed satellite topographical images. The model excels in semantic segmentation tasks, displaying high-resolution outputs, quick feature extraction, and flexibility to a wide range of applications. The findings highlight the U-Net architecture's substantial contribution to the advancement of machine learning and image processing technologies. The U-Net approach, which emphasizes pixel-wise categorization and comprehensive segmentation map production, is helpful in practical applications such as autonomous driving, disaster management, and land use planning. This study not only investigates the complexities of U-Net architecture for semantic segmentation, but also highlights its real-world applications in image classification, analysis, and landform identification. The study demonstrates the U-Net model's key significance in influencing the environment of modern technology.
- Abstract(参考訳): 本研究では,U-Netアーキテクチャをセマンティックセグメンテーションの分野で新たに活用し,衛星画像の事前処理による地形検出を行う。
本研究では、畳み込みニューラルネットワーク(CNN)セグメンテーション技術を用いて、効率的な特徴抽出にU-Netモデルを適用した。
ドロップアウトはモデルの持続性を改善するために正規化に戦略的に使用され、アダム最適化器は効果的なトレーニングに使用される。
本研究は,衛星地形画像の大量のサンプルを用いて,U-Netアーキテクチャの性能を徹底的に評価する。
このモデルはセマンティックセグメンテーションタスクに優れ、高解像度の出力、迅速な特徴抽出、幅広いアプリケーションに対する柔軟性を示す。
この発見は、機械学習と画像処理技術の進歩に対するU-Netアーキテクチャの相当な貢献を浮き彫りにしている。
ピクセルワイズ分類と包括的セグメンテーションマップ生成を重視したU-Netアプローチは,自律運転,災害管理,土地利用計画などの実践的応用に有用である。
本研究は, セマンティックセグメンテーションのためのU-Netアーキテクチャの複雑さだけでなく, 画像分類, 解析, 地形識別における実世界の応用も強調する。
この研究は、現代の技術の環境に影響を及ぼす上で、U-Netモデルの重要性を実証するものである。
関連論文リスト
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
タスク指向エッジコンピューティングは、データ分析をエッジにシフトすることで、この問題に対処する。
既存の手法は、高いモデル性能と低いリソース消費のバランスをとるのに苦労している。
ニューラルネットワークアーキテクチャを最適化する新しい協調設計フレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-29T19:02:54Z) - Efficient and Accurate Hyperspectral Image Demosaicing with Neural Network Architectures [3.386560551295746]
本研究では,ハイパースペクトル画像復調におけるニューラルネットワークアーキテクチャの有効性について検討した。
様々なネットワークモデルと修正を導入し、それらを従来の手法や既存の参照ネットワークアプローチと比較する。
その結果、我々のネットワークは、例外的な性能を示す両方のデータセットにおいて、参照モデルよりも優れるか、一致していることがわかった。
論文 参考訳(メタデータ) (2023-12-21T08:02:49Z) - SepHRNet: Generating High-Resolution Crop Maps from Remote Sensing
imagery using HRNet with Separable Convolution [3.717258819781834]
本稿では、HRNetと分離可能な畳み込み層を統合し、空間的パターンをキャプチャし、データの時間的パターンをキャプチャする、新たなDeep Learningアプローチを提案する。
提案アルゴリズムは、作物マップの生成において、97.5%の分類精度と55.2%のIoUを高い分類精度で達成する。
論文 参考訳(メタデータ) (2023-07-11T18:07:25Z) - SuperNet in Neural Architecture Search: A Taxonomic Survey [14.037182039950505]
このサーベイは、ウェイトシェアリングを使用して、すべてのアーキテクチャをサブモデルとして組み立てるニューラルネットワークを構築するスーパーネット最適化に焦点を当てている。
データ側最適化、低ランク相関緩和、多数のデプロイメントシナリオに対するトランスファー可能なNASなどです。
論文 参考訳(メタデータ) (2022-04-08T08:29:52Z) - Aerial Images Meet Crowdsourced Trajectories: A New Approach to Robust
Road Extraction [110.61383502442598]
我々は、Cross-Modal Message Propagation Network (CMMPNet)と呼ばれる新しいニューラルネットワークフレームワークを紹介する。
CMMPNetは、モダリティ固有の表現学習のための2つのディープオートエンコーダと、クロスモーダル表現洗練のためのテーラー設計のデュアルエンハンスメントモジュールで構成されている。
実世界の3つのベンチマーク実験により, CMMPNetによる堅牢な道路抽出の有効性が示された。
論文 参考訳(メタデータ) (2021-11-30T04:30:10Z) - Efficient automated U-Net based tree crown delineation using UAV
multi-spectral imagery on embedded devices [2.7393821783237184]
ガイドラインのアプローチは、農業、環境、自然災害のモニタリングなど、様々な領域に重要な利益をもたらす。
ディープラーニングはコンピュータビジョンを変革し、機械翻訳を劇的に改善した。
マルチスペクトル画像を用いて効果的にトレーニングするU-Netベースツリーデライン化手法を提案するが,その上で単一スペクトル画像のデライン化を行うことができる。
論文 参考訳(メタデータ) (2021-07-16T11:17:36Z) - KiU-Net: Overcomplete Convolutional Architectures for Biomedical Image
and Volumetric Segmentation [71.79090083883403]
トラディショナル・エンコーダ・デコーダに基づく手法は, より小さな構造を検出でき, 境界領域を正確に分割できない。
本稿では,(1)入力の細部と正確なエッジを捉えることを学ぶ完全畳み込みネットワークKite-Netと,(2)高レベルの特徴を学習するU-Netの2つの枝を持つKiU-Netを提案する。
提案手法は,より少ないパラメータとより高速な収束の利点により,最近のすべての手法と比較して性能が向上する。
論文 参考訳(メタデータ) (2020-10-04T19:23:33Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - NAS-DIP: Learning Deep Image Prior with Neural Architecture Search [65.79109790446257]
近年の研究では、深部畳み込みニューラルネットワークの構造が、以前に構造化された画像として利用できることが示されている。
我々は,より強い画像の先行を捉えるニューラルネットワークの探索を提案する。
既存のニューラルネットワーク探索アルゴリズムを利用して,改良されたネットワークを探索する。
論文 参考訳(メタデータ) (2020-08-26T17:59:36Z) - Semantic Segmentation With Multi Scale Spatial Attention For Self
Driving Cars [2.7317088388886384]
本稿では,様々なスケールのマルチスケール特徴融合を用いた新しいニューラルネットワークを提案し,その精度と効率的なセマンティックイメージセグメンテーションを提案する。
我々は、ResNetベースの特徴抽出器、ダウンサンプリング部における拡張畳み込み層、アップサンプリング部におけるアトラス畳み込み層を使用し、コンキャット操作を用いてそれらをマージした。
より文脈的な情報をエンコードし、ネットワークの受容領域を強化するため、新しいアテンションモジュールが提案されている。
論文 参考訳(メタデータ) (2020-06-30T20:19:09Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。