論文の概要: Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector
- arxiv url: http://arxiv.org/abs/2502.05540v2
- Date: Mon, 17 Feb 2025 12:36:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:04:21.501595
- Title: Demystifying Catastrophic Forgetting in Two-Stage Incremental Object Detector
- Title(参考訳): 2段インクリメンタル物体検出装置における破滅的偽造
- Authors: Qirui Wu, Shizhou Zhang, De Cheng, Yinghui Xing, Di Xu, Peng Wang, Yanning Zhang,
- Abstract要約: 破滅的な忘れ物は主にRoIヘッドに局在している。
NSGP-RePREは2種類のプロトタイプのリプレイを通じて忘れを緩和する。
NSGP-RePREはPascal VOCおよびMS COCOデータセット上で最先端のパフォーマンスを達成する。
- 参考スコア(独自算出の注目度): 42.40881712297689
- License:
- Abstract: Catastrophic forgetting is a critical chanllenge for incremental object detection (IOD). Most existing methods treat the detector monolithically, relying on instance replay or knowledge distillation without analyzing component-specific forgetting. Through dissection of Faster R-CNN, we reveal a key insight: Catastrophic forgetting is predominantly localized to the RoI Head classifier, while regressors retain robustness across incremental stages. This finding challenges conventional assumptions, motivating us to develop a framework termed NSGP-RePRE. Regional Prototype Replay (RePRE) mitigates classifier forgetting via replay of two types of prototypes: coarse prototypes represent class-wise semantic centers of RoI features, while fine-grained prototypes model intra-class variations. Null Space Gradient Projection (NSGP) is further introduced to eliminate prototype-feature misalignment by updating the feature extractor in directions orthogonal to subspace of old inputs via gradient projection, aligning RePRE with incremental learning dynamics. Our simple yet effective design allows NSGP-RePRE to achieve state-of-the-art performance on the Pascal VOC and MS COCO datasets under various settings. Our work not only advances IOD methodology but also provide pivotal insights for catastrophic forgetting mitigation in IOD. Code will be available soon.
- Abstract(参考訳): 破滅的な忘れは、インクリメンタルオブジェクト検出(IOD)にとって重要な変化である。
既存のほとんどの方法は、コンポーネント固有の忘れを解析することなく、インスタンスのリプレイや知識の蒸留に依存して、検出器をモノリシックに処理する。
破滅的忘れは、主にRoIヘッド分類器に局所化されているが、回帰器は段階的に頑健である。
この発見は従来の仮定に挑戦し、NSGP-RePREと呼ばれるフレームワークを開発する動機となった。
粗いプロトタイプはRoI機能のクラスワイドなセマンティックセンターを表し、きめ細かいプロトタイプはクラス内のバリエーションをモデル化する。
Null Space Gradient Projection (NSGP) は、勾配投影により古い入力のサブ空間に直交する方向に特徴抽出器を更新し、RePREを漸進的な学習ダイナミクスと整合させることにより、プロトタイプ機能不整合を取り除くために導入された。
NSGP-RePREは,Pascal VOCおよびMS COCOデータセット上で,様々な設定で最先端のパフォーマンスを実現することができる。
我々の研究は、IODの方法論を前進させるだけでなく、IODにおける破滅的な忘れを緩和するための重要な洞察を提供する。
コードはまもなく利用可能になる。
関連論文リスト
- InfRS: Incremental Few-Shot Object Detection in Remote Sensing Images [11.916941756499435]
本稿では,リモートセンシング画像におけるインクリメンタルな数ショット物体検出の複雑な課題について検討する。
本稿では,新しい授業の漸進的な学習を促進するために,InfRSと呼ばれる先駆的な微調整技術を導入する。
我々はワッサーシュタイン距離に基づく原型校正戦略を開発し、破滅的な忘れ問題を軽減する。
論文 参考訳(メタデータ) (2024-05-18T13:39:50Z) - Small Object Detection via Coarse-to-fine Proposal Generation and
Imitation Learning [52.06176253457522]
本稿では,粗粒度パイプラインと特徴模倣学習に基づく小型物体検出に適した2段階フレームワークを提案する。
CFINetは、大規模な小さなオブジェクト検出ベンチマークであるSODA-DとSODA-Aで最先端の性能を達成する。
論文 参考訳(メタデータ) (2023-08-18T13:13:09Z) - Generalizable Industrial Visual Anomaly Detection with Self-Induction
Vision Transformer [5.116033262865781]
産業用視覚異常検出・局所化のための自己誘導型視覚変換器(SIVT)を提案する。
提案したSIVTは、まず、事前学習したCNNからプロパティ記述子として識別特徴を抽出し、抽出した特徴を自己監督的に再構成する。
その結果,AUROCでは2.8-6.3,APでは3.3-7.6の改善により,最先端検出性能を向上できることがわかった。
論文 参考訳(メタデータ) (2022-11-22T14:56:12Z) - Few-Shot Segmentation via Rich Prototype Generation and Recurrent
Prediction Enhancement [12.614578133091168]
本稿では,プロトタイプ学習パラダイムを強化するために,リッチプロトタイプ生成モジュール (RPGM) と繰り返し予測拡張モジュール (RPEM) を提案する。
RPGMはスーパーピクセルとK平均クラスタリングを組み合わせて、補完的なスケール関係を持つリッチなプロトタイプ機能を生成する。
RPEMは、リカレントメカニズムを使用して、ラウンドウェイ伝搬デコーダを設計する。
論文 参考訳(メタデータ) (2022-10-03T08:46:52Z) - Plug-and-Play Few-shot Object Detection with Meta Strategy and Explicit
Localization Inference [78.41932738265345]
本稿では, 微調整を行なわずに新しいカテゴリーの物体を正確に検出できるプラグ検出器を提案する。
局所化プロセスに2つの明示的な推論を導入し、アノテーション付きデータへの依存を減らす。
これは、様々な評価プロトコルの下で、効率、精度、リコールの両方において大きなリードを示している。
論文 参考訳(メタデータ) (2021-10-26T03:09:57Z) - DeFRCN: Decoupled Faster R-CNN for Few-Shot Object Detection [17.326702469604676]
未確認クラスのごく少数の例から、新しいオブジェクトを迅速に検出することを目的としていない。
既存のほとんどのアプローチでは、基本的な検出フレームワークとしてFaster R-CNNを使用している。
DeFRCN (Decoupled Faster R-CNN) というシンプルなアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-08-20T06:12:55Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
本稿では,分類に基づく比較的研究の少ない方法論について検討する。
我々は2つの側面でフロンティアを推し進めるための新しい手法を提案する。
航空画像のための大規模公開データセットの実験と視覚解析は,我々のアプローチの有効性を示している。
論文 参考訳(メタデータ) (2020-11-19T05:42:02Z) - Scope Head for Accurate Localization in Object Detection [135.9979405835606]
本研究では,各位置のアンカーを相互依存関係としてモデル化したScopeNetと呼ばれる新しい検出器を提案する。
我々の簡潔で効果的な設計により、提案したScopeNetはCOCOの最先端の成果を達成する。
論文 参考訳(メタデータ) (2020-05-11T04:00:09Z) - Simple and Effective Prevention of Mode Collapse in Deep One-Class
Classification [93.2334223970488]
深部SVDDにおける超球崩壊を防止するための2つの正則化器を提案する。
第1の正則化器は、標準のクロスエントロピー損失によるランダムノイズの注入に基づいている。
第2の正規化器は、小さすぎるとミニバッチ分散をペナライズする。
論文 参考訳(メタデータ) (2020-01-24T03:44:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。