論文の概要: Large Memory Network for Recommendation
- arxiv url: http://arxiv.org/abs/2502.05558v1
- Date: Sat, 08 Feb 2025 13:08:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:07.989147
- Title: Large Memory Network for Recommendation
- Title(参考訳): 推薦のための大規模メモリネットワーク
- Authors: Hui Lu, Zheng Chai, Yuchao Zheng, Zhe Chen, Deping Xie, Peng Xu, Xun Zhou,
- Abstract要約: Large Memory Network (LMN) は、ユーザ履歴の振る舞い情報を大規模メモリブロックに圧縮保存する新しいアイデアである。
LMNはDouyin E-Commerce Search (ECS)に完全にデプロイされており、毎日数百万のユーザにサービスを提供している。
- 参考スコア(独自算出の注目度): 19.996929409477904
- License:
- Abstract: Modeling user behavior sequences in recommender systems is essential for understanding user preferences over time, enabling personalized and accurate recommendations for improving user retention and enhancing business values. Despite its significance, there are two challenges for current sequential modeling approaches. From the spatial dimension, it is difficult to mutually perceive similar users' interests for a generalized intention understanding; from the temporal dimension, current methods are generally prone to forgetting long-term interests due to the fixed-length input sequence. In this paper, we present Large Memory Network (LMN), providing a novel idea by compressing and storing user history behavior information in a large-scale memory block. With the elaborated online deployment strategy, the memory block can be easily scaled up to million-scale in the industry. Extensive offline comparison experiments, memory scaling up experiments, and online A/B test on Douyin E-Commerce Search (ECS) are performed, validating the superior performance of LMN. Currently, LMN has been fully deployed in Douyin ECS, serving millions of users each day.
- Abstract(参考訳): ユーザの行動シーケンスをリコメンデータシステムでモデル化することは、ユーザの嗜好を理解する上で不可欠であり、パーソナライズされた正確なレコメンデーションを可能にし、ユーザの維持とビジネス価値の向上を可能にする。
その重要性にもかかわらず、現在の逐次モデリングアプローチには2つの課題がある。
空間的側面から、一般的な意図的理解のために類似したユーザの興味を相互に知覚することは困難であり、時間的側面から見ると、現在の手法は、固定長の入力シーケンスによって長期的関心を忘れる傾向にある。
本稿では,ユーザ履歴の振る舞い情報を大規模メモリブロックに圧縮保存することで,新たなアイデアを提供する。
詳細なオンラインデプロイメント戦略により、業界ではメモリブロックを簡単に100万スケールまでスケールできる。
大規模なオフライン比較実験、メモリスケールアップ実験、Douyin E-Commerce Search(ECS)のオンラインA/Bテストを行い、LMNの優れた性能を検証した。
現在、LMNはDouyin ECSに完全にデプロイされており、毎日数百万のユーザにサービスを提供している。
関連論文リスト
- Scalable Cross-Entropy Loss for Sequential Recommendations with Large Item Catalogs [4.165917157093442]
本稿では,シーケンシャルラーニング・セットアップにおいて,新しいスケーラブルクロスエントロピー(SCE)損失関数を提案する。
大規模なカタログを持つデータセットのCE損失を近似し、推奨品質を損なうことなく、時間効率とメモリ使用量の両方を向上する。
複数のデータセットに対する実験結果から,SCEのピークメモリ使用率を最大100倍に抑える効果が示された。
論文 参考訳(メタデータ) (2024-09-27T13:17:59Z) - Scalable Dynamic Embedding Size Search for Streaming Recommendation [54.28404337601801]
実世界のレコメンデーションシステムは、しばしばストリーミングレコメンデーションシナリオで機能する。
ユーザやアイテムの数は増加を続けており、かなりのストレージリソース消費につながっている。
SCALLと呼ばれるストリーミングレコメンデーション用のLightweight Embeddingsを学び、ユーザ/イテムの埋め込みサイズを適応的に調整できる。
論文 参考訳(メタデータ) (2024-07-22T06:37:24Z) - SHERL: Synthesizing High Accuracy and Efficient Memory for Resource-Limited Transfer Learning [63.93193829913252]
本稿では,リソース制限シナリオに対するSHERLと呼ばれる革新的なMETL戦略を提案する。
初期経路では、中間出力は反冗長動作によって統合される。
遅延ルートでは、最小限の遅延事前トレーニングされたレイヤを利用することで、メモリオーバーヘッドのピーク需要を軽減できる。
論文 参考訳(メタデータ) (2024-07-10T10:22:35Z) - Training-Free Exponential Context Extension via Cascading KV Cache [49.608367376911694]
カスケードサブキャッシュバッファを利用して,最も関連性の高いトークンを選択的に保持する機構を導入する。
本手法は,1Mトークンのフラッシュアテンションと比較して,プリフィルステージ遅延を6.8倍削減する。
論文 参考訳(メタデータ) (2024-06-24T03:59:17Z) - Sampling Is All You Need on Modeling Long-Term User Behaviors for CTR
Prediction [15.97120392599086]
textbfM(textbfSampling-based textbfDeep textbfModeling)を提案する。
提案手法は, 長期ユーザ行動のモデル化において, 標準的な注意モデルと同等に機能することが理論的, 実験的に示されている。
論文 参考訳(メタデータ) (2022-05-20T15:20:52Z) - Denoising User-aware Memory Network for Recommendation [11.145186013006375]
我々はDUMN(Denoising User-Aware memory network)という新しいCTRモデルを提案する。
DUMNは明示的なフィードバックの表現を使用して、暗黙的なフィードバックの表現を浄化し、暗黙的なフィードバックを効果的に軽視する。
2つの実際のEコマースユーザ行動データセットの実験は、DUMNが最先端のベースラインよりも大幅に改善されていることを示している。
論文 参考訳(メタデータ) (2021-07-12T14:39:36Z) - Dynamic Memory based Attention Network for Sequential Recommendation [79.5901228623551]
DMAN(Dynamic Memory-based Attention Network)と呼ばれる新しい連続的推薦モデルを提案する。
長い動作シーケンス全体を一連のサブシーケンスに分割し、モデルをトレーニングし、ユーザの長期的な利益を維持するためにメモリブロックのセットを維持する。
動的メモリに基づいて、ユーザの短期的および長期的関心を明示的に抽出し、組み合わせて効率的な共同推薦を行うことができる。
論文 参考訳(メタデータ) (2021-02-18T11:08:54Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
本稿では,注意機構と繰り返し単位を改善するための時間ゲーティング手法を提案する。
また,長期と短期の嗜好を統合するマルチホップ・タイムアウェア・アテンテーティブ・メモリ・ネットワークを提案する。
提案手法は,候補探索タスクに対してスケーラブルであり,ドット積に基づくTop-Kレコメンデーションのための潜在因数分解の非線形一般化とみなすことができる。
論文 参考訳(メタデータ) (2020-05-18T11:29:38Z) - PeTra: A Sparsely Supervised Memory Model for People Tracking [50.98911178059019]
メモリスロット内のエンティティを追跡するように設計されたメモリ拡張ニューラルネットワークであるPeTraを提案する。
我々は、重要なモデリング選択を経験的に比較し、強い性能を維持しながら、メモリモジュールの設計のいくつかの側面を単純化できることを見出した。
PeTraは両方の評価に非常に効果的で、限られたアノテーションで訓練されているにもかかわらず、メモリ内の人々を追跡できる能力を示している。
論文 参考訳(メタデータ) (2020-05-06T17:45:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。