論文の概要: Online Bidding Algorithms with Strict Return on Spend (ROS) Constraint
- arxiv url: http://arxiv.org/abs/2502.05599v1
- Date: Sat, 08 Feb 2025 14:58:49 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:29:14.790939
- Title: Online Bidding Algorithms with Strict Return on Spend (ROS) Constraint
- Title(参考訳): Strict Return on Spend (ROS) 制約付きオンライン入札アルゴリズム
- Authors: Rahul Vaze, Abhishek Sinha,
- Abstract要約: 厳密な返却制約(ROSC)の下での自動入札問題について考察する。
タイムスロット全体で明らかな値が一定である場合でも、問題は自明ではない。
- 参考スコア(独自算出の注目度): 16.99491218081617
- License:
- Abstract: Auto-bidding problem under a strict return-on-spend constraint (ROSC) is considered, where an algorithm has to make decisions about how much to bid for an ad slot depending on the revealed value, and the hidden allocation and payment function that describes the probability of winning the ad-slot depending on its bid. The objective of an algorithm is to maximize the expected utility (product of ad value and probability of winning the ad slot) summed across all time slots subject to the total expected payment being less than the total expected utility, called the ROSC. A (surprising) impossibility result is derived that shows that no online algorithm can achieve a sub-linear regret even when the value, allocation and payment function are drawn i.i.d. from an unknown distribution. The problem is non-trivial even when the revealed value remains constant across time slots, and an algorithm with regret guarantee that is optimal up to logarithmic factor is derived.
- Abstract(参考訳): 厳格なリターン・オン・スペンド制約(ROSC)の下での自動入札問題は考慮され、アルゴリズムは、明らかにされた値に応じて広告スロットにいくら入札するかを判断し、その入札に応じて広告スロットに当選する確率を示す隠れアロケーションと支払い関数を記述しなければならない。
アルゴリズムの目的は、期待される効用(広告値の積と広告スロットに勝つ確率)を全タイムスロットで最大化することである。
オンラインアルゴリズムが未知の分布から値、割当、支払関数を引いたとしても、サブ線形後悔を達成できない(予想される)不合理性結果が導出される。
この問題は、タイムスロット全体で明らかにされた値が一定である場合でも非自明であり、対数係数に最適化された後悔保証付きアルゴリズムが導出される。
関連論文リスト
- Learning in Budgeted Auctions with Spacing Objectives [41.63843740537835]
多くのオークションでは、参加者は勝利の頻度だけでなく、勝利が時間とともにどのように分配されるかに気を配る。
我々は,この現象の簡単なモデルを導入し,勝利の値が最後の勝利以来のコンケーブ関数であるような,予算付きオークションとしてモデル化する。
状態に依存しない戦略は変換の不確かさを伴わずに線形後悔を引き起こすことを示す。
論文 参考訳(メタデータ) (2024-11-07T16:31:31Z) - Selling Joint Ads: A Regret Minimization Perspective [7.288063443108292]
オンライン小売によるモチベーションにより、一品(広告スロットなど)を2つの非排除購入者(商店、ブランド等)に販売する問題を考える。
この問題は、例えば、マーチャントとブランドが商品を宣伝するために競売に協力して入札する状況と、表示されている広告の恩恵を捉えている。
メカニズムは2つの入札を収集し、どちらを割り当てるか、どの支払いを行うかを決定する。
論文 参考訳(メタデータ) (2024-09-12T07:59:10Z) - Learning Constrained Markov Decision Processes With Non-stationary Rewards and Constraints [34.7178680288326]
制約付きマルコフ決定プロセス(CMDP)では、逆の報酬と制約があり、よく知られた不合理性の結果、任意のアルゴリズムがサブリニア後悔とサブリニア制約違反を達成できない。
非定常的な報酬や制約のあるCMDPでは、非定常性の増加とともに性能がスムーズに低下するアルゴリズムを提供することで、この負の結果が緩和できることが示される。
論文 参考訳(メタデータ) (2024-05-23T09:48:48Z) - Variance-Dependent Regret Bounds for Linear Bandits and Reinforcement
Learning: Adaptivity and Computational Efficiency [90.40062452292091]
本稿では,不整合雑音を持つ線形帯域に対する計算効率のよい最初のアルゴリズムを提案する。
我々のアルゴリズムは未知のノイズの分散に適応し、$tildeO(d sqrtsum_k = 1K sigma_k2 + d)$ regretを達成する。
また、強化学習において、線形混合マルコフ決定過程(MDP)に対する分散適応アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-21T00:17:24Z) - Autobidders with Budget and ROI Constraints: Efficiency, Regret, and Pacing Dynamics [53.62091043347035]
オンライン広告プラットフォームで競合するオートバイディングアルゴリズムのゲームについて検討する。
本稿では,全ての制約を満たすことを保証し,個人の後悔を解消する勾配に基づく学習アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-01-30T21:59:30Z) - Corruption-Robust Algorithms with Uncertainty Weighting for Nonlinear
Contextual Bandits and Markov Decision Processes [59.61248760134937]
本稿では,$tildeO(sqrtT+zeta)$を後悔するアルゴリズムを提案する。
提案アルゴリズムは、最近開発された線形文脈帯域からの不確実性重み付き最小二乗回帰に依存する。
本稿では,提案アルゴリズムをエピソディックなMDP設定に一般化し,まず汚職レベル$zeta$への付加的依存を実現する。
論文 参考訳(メタデータ) (2022-12-12T15:04:56Z) - Efficient Algorithms for Planning with Participation Constraints [74.74967476995572]
我々は[Zhang et al., 2022]に導入された参加制約を伴う計画の問題を考える。
この問題では、プリンシパルが決定プロセスのアクションを選択し、プリンシパルとエージェントの別々のユーティリティが生成される。
有限ホライズン設定では,これまでは$varepsilon$-approximationという付加値しか知られていなかった。
論文 参考訳(メタデータ) (2022-05-16T15:47:41Z) - Safe Online Bid Optimization with Return-On-Investment and Budget
Constraints subject to Uncertainty [87.81197574939355]
最適化問題と学習問題の両方について検討する。
我々は、潜在的に線形な数の制約違反を犠牲にして、サブ線形後悔を保証するアルゴリズム、すなわちGCBを提供する。
より興味深いことに、我々はGCB_safe(psi,phi)というアルゴリズムを提供し、サブ線形擬似回帰と安全性w.h.p.の両方を、耐性 psi と phi を受け入れるコストで保証する。
論文 参考訳(メタデータ) (2022-01-18T17:24:20Z) - Online Stochastic Optimization with Wasserstein Based Non-stationarity [12.91020811577007]
有限期間の地平線上の複数の予算制約を持つ一般的なオンライン最適化問題を検討する。
意思決定者の目標は、予算制約の対象となる累積報酬を最大化することである。
この定式化は、オンラインリニアプログラミングやネットワーク収益管理を含む幅広いアプリケーションを取り込む。
論文 参考訳(メタデータ) (2020-12-13T04:47:37Z) - Stochastic Linear Bandits Robust to Adversarial Attacks [117.665995707568]
我々はロバスト位相除去アルゴリズムの2つの変種を提供し、その1つは$C$を知っており、もう1つはそうでない。
いずれの変種も、倒壊しない場合には、それぞれ$C = 0$ となり、それぞれ追加の加法項が生じる。
文脈的設定では、単純な欲求的アルゴリズムは、明示的な探索を行わず、C$を知らないにもかかわらず、ほぼ最適加法的後悔項で証明可能な堅牢性を示す。
論文 参考訳(メタデータ) (2020-07-07T09:00:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。