論文の概要: Lossless Acceleration of Large Language Models with Hierarchical Drafting based on Temporal Locality in Speculative Decoding
- arxiv url: http://arxiv.org/abs/2502.05609v1
- Date: Sat, 08 Feb 2025 15:32:53 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-11 14:33:01.667329
- Title: Lossless Acceleration of Large Language Models with Hierarchical Drafting based on Temporal Locality in Speculative Decoding
- Title(参考訳): 投機的復号における時間的局所性に基づく階層的描画を伴う大規模言語モデルの無意味高速化
- Authors: Sukmin Cho, Sangjin Choi, Taeho Hwang, Jeongyeon Seo, Soyeong Jeong, Huije Lee, Hoyun Song, Jong C. Park, Youngjin Kwon,
- Abstract要約: LLM(Large Language Models)における推論の高速化は、リアルタイムインタラクションにおいて重要である。
投機的復号化は、トークンの起草と検証によって推論速度の向上に注目され、1つのフォワードパスで複数のトークンが生成される。
本稿では,時間的局所性に基づく階層型フレームワークを用いて,さまざまなトークンソースを複数のデータベースにまとめる,新しい無損失ドラフト手法である階層ドラフト(HD)を提案する。
7B と 13B のパラメータを持つ LLM を用いた Spec-Bench 実験では,HD が既存のデータベースドラフト手法より優れており,モデルサイズ,タスク,温度に対する堅牢な推論スピードアップが達成されている。
- 参考スコア(独自算出の注目度): 11.167833073080612
- License:
- Abstract: Accelerating inference in Large Language Models (LLMs) is critical for real-time interactions, as they have been widely incorporated into real-world services. Speculative decoding, a fully algorithmic solution, has gained attention for improving inference speed by drafting and verifying tokens, thereby generating multiple tokens in a single forward pass. However, current drafting strategies usually require significant fine-tuning or have inconsistent performance across tasks. To address these challenges, we propose Hierarchy Drafting (HD), a novel lossless drafting approach that organizes various token sources into multiple databases in a hierarchical framework based on temporal locality. In the drafting step, HD sequentially accesses multiple databases to obtain draft tokens from the highest to the lowest locality, ensuring consistent acceleration across diverse tasks and minimizing drafting latency. Our experiments on Spec-Bench using LLMs with 7B and 13B parameters demonstrate that HD outperforms existing database drafting methods, achieving robust inference speedups across model sizes, tasks, and temperatures.
- Abstract(参考訳): LLM(Large Language Models)における推論の高速化は、現実のサービスに広く組み込まれているため、リアルタイムのインタラクションに不可欠である。
完全にアルゴリズム的な解である投機的復号化は、トークンの起草と検証によって推論速度の向上に注目され、1つのフォワードパスで複数のトークンが生成される。
しかし、現在のドラフト戦略は、通常、かなりの微調整を必要とするか、タスク間での一貫性のないパフォーマンスを必要とする。
これらの課題に対処するために、時間的局所性に基づく階層的枠組みを用いて、さまざまなトークンソースを複数のデータベースにまとめる、新しいロスレスドラフト手法である階層ドラフト(HD)を提案する。
ドラフトステップでは、HDは複数のデータベースに順次アクセスして、最高から最低のローカリティからドラフトトークンを取得する。
7B と 13B のパラメータを持つ LLM を用いた Spec-Bench 実験では,HD が既存のデータベースドラフト手法より優れており,モデルサイズ,タスク,温度に対する堅牢な推論スピードアップが達成されている。
関連論文リスト
- AdaEDL: Early Draft Stopping for Speculative Decoding of Large Language Models via an Entropy-based Lower Bound on Token Acceptance Probability [5.421949344085942]
AdaEDLは、静的なドラフト長の投機的デコーディングを10%から57%上回っている。
また、AdaEDLはこれらの技術よりも堅牢であり、高温シナリオにおける性能を保っていることを示す。
論文 参考訳(メタデータ) (2024-10-24T01:13:43Z) - COrAL: Order-Agnostic Language Modeling for Efficient Iterative Refinement [80.18490952057125]
反復改良は、複雑なタスクにおける大規模言語モデル(LLM)の能力を高める効果的なパラダイムとして登場した。
我々はこれらの課題を克服するために、コンテキストワイズ順序非依存言語モデリング(COrAL)を提案する。
当社のアプローチでは、管理可能なコンテキストウィンドウ内で複数のトークン依存関係をモデル化しています。
論文 参考訳(メタデータ) (2024-10-12T23:56:19Z) - ParallelSpec: Parallel Drafter for Efficient Speculative Decoding [62.68430939686566]
提案するParallelSpecは,最先端の投機的復号化手法における自己回帰的起草戦略の代替となる。
投機段階における自己回帰的起草とは対照的に,効率的な投機モデルとして機能する並列投機を訓練する。
論文 参考訳(メタデータ) (2024-10-08T01:05:08Z) - TidalDecode: Fast and Accurate LLM Decoding with Position Persistent Sparse Attention [7.4088392854630625]
大規模言語モデル (LLM) は様々なNLPタスクにおいて大幅な進歩をもたらした。
本稿では,定位置スパークアテンションによる高速かつ高精度なLCMデコーディングシステムであるTidalDecodeを紹介する。
論文 参考訳(メタデータ) (2024-10-07T14:30:27Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - KV Cache Compression, But What Must We Give in Return? A Comprehensive Benchmark of Long Context Capable Approaches [52.02764371205856]
長期の文脈能力は、大規模言語モデル(LLM)にとって重要な能力である
この研究は、現在の手法の分類を提供し、長いコンテキストタスクの7つのカテゴリにまたがる10以上の最先端のアプローチを評価する。
論文 参考訳(メタデータ) (2024-07-01T17:59:47Z) - Adaptive Draft-Verification for Efficient Large Language Model Decoding [24.347886232342862]
大規模言語モデル(LLM)デコードでは、与えられたコンテキストに基づいてトークンのシーケンスを生成する。
典型的な自己回帰復号法では、生成されたトークンごとに別の前方通過が必要となる。
微調整を必要とせずにLDMデコーディングを高速化するADEDを導入する。
論文 参考訳(メタデータ) (2024-06-27T22:20:39Z) - Multi-Candidate Speculative Decoding [82.05519287513444]
大規模な言語モデルは、様々なNLPタスクで印象的な機能を示してきたが、その生成は自動回帰的に時間を要する。
これは高速なドラフトモデルから候補セグメントを生成し、ターゲットモデルによって並列に検証する。
本稿では,複数の候補をドラフトモデルから抽出し,検証のためにバッチにまとめる手法を提案する。
対象モデルの分布を維持しつつ,効率的な多候補検証のためのアルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-01-12T17:15:23Z) - SPEED: Speculative Pipelined Execution for Efficient Decoding [35.45955948053644]
本稿では,現在のトークンと並行して複数の将来トークンを投機的に実行することで,推論効率を向上させるSPEEDを提案する。
パラメータ共有を使用するTransformerデコーダでは、並列に実行されるトークンのメモリ操作を償却することができる。
モデル精度に対する遅延低減の観点から,本手法の有効性を実証し,パラメータ共有によるより深いデコーダのトレーニングを最小限のランタイムオーバーヘッドで行う方法を示した。
論文 参考訳(メタデータ) (2023-10-18T16:07:01Z) - Long Document Summarization with Top-down and Bottom-up Inference [113.29319668246407]
本稿では、2つの側面の要約モデルを改善するための原則的推論フレームワークを提案する。
我々のフレームワークは、トップレベルが長距離依存性をキャプチャするドキュメントの階層的な潜在構造を前提としています。
本稿では,様々な要約データセットに対して提案手法の有効性を示す。
論文 参考訳(メタデータ) (2022-03-15T01:24:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。